标签 : DDRMC
内存模块 (Memory Module):提到内存模块是指一个印刷电路板表面上有镶嵌数个记忆体芯片chips,而这内存芯片通常是DRAM芯片,但近来系统设计也有使用快取隐藏式芯片镶嵌在内存模块上,内存模块是安装在PC 的主机板上的专用插槽(Slot)上镶嵌在Module上.DRAM芯片(chips)的数量和个别芯片(chips)的容量,是决定内存模块的设计的主要因素。
内存模组在此可以简单地理解为芯片组所能支持的标准内存插槽数量。由于每款芯片组对于内存芯片的数据深度和数据宽度支持程度不同,实际上也就决定了每个内存物理BANK的最大容量,(寻址空间)进而也就决定了芯片组所能支持的内存物理BANK数量。而内存物理BANK数量就决定了标准内存插槽的数量,一般来说,每个内存插槽支持2个内存物理BANK。例如865PE芯片组支持4条双BANK内存插槽,而815EP芯片组则支持2条双BANK内存插槽或3条单BANK内存插槽。
BANK RANK:BANK RANK是指内存插槽的计算单位(也有人称为记忆库),它是计算机系统与内存间资料汇流的基本运作单位。
Rank和Bank
为了保证CPU的正常工作,必须一次传输完CPU在一个传输周期内所需要的数据。而CPU在一个传输周期能接收的数据容量就是CPU数据总线的位宽,单位是bit(位)。为了能一次存储32bit, 64bit或者128bit的信息,就需要多个8bit RAM芯片组合在一起,我们称之为物理Bank(Physical Bank,简称P-bank):以物理Bank来组织存储单元,每个内存物理Bank的位宽同数据总线的位宽一样。
如果将物理Bank说成是内存颗粒阵列的话,那么逻辑Bank可以看做是数据存储阵列。内存内部是一个存储阵列,指定一个行(Row),再指定一个列(Column),就可以准确地找到所需要的单元格,这就是内存芯片寻址的基本原理。对于内存,每个单元格可称为存储单元(Cell),而这个存储阵列就称为内存芯片的逻辑Bank(Logical Bank,简称L-Bank)。在一个时钟周期内只允许对一个逻辑Bank进行操作,内存芯片(颗粒)的位宽就是逻辑Bank的位宽 。CPU工作时,每次只访问一个物理BANK(RANK). 所以一般内存芯片中都是将内存容量分成几个阵列来制造,也就是说存在内存芯片中存在多个逻辑Bank。比如16MB芯片(512K x 16Bit x 2 BANK) 就有2个Bank。
为了和逻辑Bank区分,经常把物理Bank称为Rank, 逻辑Bank简称为Bank。
简单地说这个BANK(物理BANK)就是内存和主板上的北桥芯片之间用来交换数据的通道,目前以SDRAM系统为例,CPU与内存之间(就是CPU到DIMM槽)的接口位宽是64bit,也就意味着CPU一次会向内存发送或从内存读取64bit的数据,那么这一个64bit的数据集合就是一个内存条BANK,很多厂家的产品说明里称之为物理BANK(Physical BANK),目前绝大多数的芯片组都只能支持一根内存包含两个物理BANK,但是针对某个具体的条子,很多人想当然,认为每个DIMM插槽使用内存条的面数来区分占用几个BANK通道,单面的(16M,64M)只占用一个物理BANK,而双面的(32M,128M)则需占用两个物理BANK。实际上物理BANK与面数是无关的,PCB电路可以设计成双面和单面,也可把全部芯片(16颗)放在一面上(至少从理论上是完全可能)。有些内存条单面就是一个物理BANK,但有些双面才是一个物理BANK,所以不能一概而论。256MB内存条就是一个典型的例子,虽然是双面并多达16枚芯片,但仍然是单个物理BANK的。要准确知道内存条实际物理BANK数量,我们只要将单个芯片的逻辑BANK数量和位宽以及内存条上芯片个数搞清楚。各个芯片位宽之和为64就是单物理BANK,如果是128就是双物理BANK。
CPU访问的数据是存放在内存条的内存颗粒上的,现在的芯片组设计时都是要求内存条上每个芯片均承担提供数据的任务,即内存条上的每个颗粒都要负担这64bit数据的一部分。这就要牵扯到我们上文所说得位宽的问题了,如果内存芯片的位宽是8位,那么用这个芯片组成内存条只需要8颗芯片即完成了64位数据并发任务,如果是4位,那么就需要16颗芯片才能达到64bit的要求。当内存条颗粒设计为位宽为8位,16颗内存颗粒的时候,内存条的位宽就变为6 x 16=128bit。所以就要设计为双BANK(RANK)。这是由于CPU一次只能处理64bit的数据所造成的。以后随着技术的进步,128bit,256bit都是可以实现的。以上就是所谓的逻辑BANK和物理BANK。
虽然这些区别不是很大,但是却往往造成不小的问题,让人头痛。举一个较古老的例子:曾经有一款大度256M内存采用单面了设计,仅有一组物理BANK。但是由于INTEL(Intel440BX,i815)芯片组只能正确识别单物理BANK最高容量为128M,这种情况造成大部分INTEL主板就无法完全使用大度256M内存的全部容量,只可以使用一半128M。
事实上很多类似的大容量内存不能为一些旧型号主板支持的主要原因就是芯片组对内存芯片的逻辑BANK数据深度有一定限制。我们知道芯片的容量主要由三个参数决定,首先是逻辑BANK的单元格数(数据深度),其次是逻辑BANK的位数。最后是逻辑BANK的个数。比如16MB芯片(512K x 16Bit x 2 BANK),三者相乘得到芯片的容量。大度内存256MB之所以不能在440BX上用,就是由于BX芯片组只支持内存芯片的数据深度为4M,而不是8M,所以大度条子的内存芯片在BX板上被识别成4×4×4=64Mbit(8MB),而不是本来的8×4×4=128Mbit(16MB),现在很多大容量的内存没有在BANK数和位宽上提高多少,基本都是增加芯片的数据深度,而这是需要芯片组支持的,象INTEL的LX/BX/810/815等老主板都只能支持最大4M,所以出问题再所难免。
Channel和Branch
一个内存通道(Channel)对应MCH芯片里的一个内存控制器,在一个内存通道上,CPU可分别寻址、读取数据。
除了以内存通道为单位位,还有跨通道的分支(Branch) 。 以Intel 7300芯片组为例,MCH内集成了4通道内存控制器(Channel 0-3,每两个Channel组成一个Branch)。每个通道支持一个Riser,每个Riser最多可安装8条DIMM内存。
预读取技术
4-bit prefetch DDR 2提高带宽的关键技术,DDR2的DRAM内部都采用4个bank的结构,每个bank由存储单元(cell)队列构成,存储单元队列通过行(row)和列(column)地址定位。让我们看看基本的内存读操作的工作流程:首先是命令和地址信息输入,经过地址解码器分解成bank(段)和Word(字)选择,Word选择就是行选择,之后是对存储单元进行再存储(Restore)和预充电(Precharge)。然后是Column(列)选择,到此为止存储单元(cell)已经被定位。存储单元的数据被输出到内部数据总线(Internal Data Bus),最后通过输出电路输出数据。
从内存的读操作中可以了解到内存工作的几个瓶颈,它们分别是内存单元的再存储和预充电的延时,这个延迟属于bank内部的延迟,由于DRAM结构的限制这个延迟本身不太好解决。还有内部数据总线(Internal Data Bus)的频率限制,内部数据总线是连接DRAM颗粒中4个bank的总线,最后一个DRAM的瓶颈是输入/输出电路的延迟。
对于内部数据总线频率较低的瓶颈,可以通过使用Prefetch(数据预取)架构来解决,举例来说PC133 SDRAM采用了管线突发架构(Pipeline)或者说是1bit Prefetch,因此它内部数据总线的频率是133MHz和数据输出端的数据传输率是一样的。DDR内存采用了2bit Prefetch技术,因此它输出端的数据传输率是内部数据总线频率的2倍,以DDR400为例,它的内部数据总线的频率是200MHz,而输出端的数据传输率达到了400MHz。
我们知道DRAM内部存储单元的频率提高比较困难且成本较高,DDR333的核心频率已经达到了167MHz,为了解决外部数据传输率和核心速度之间的矛盾,DDR2采用了4bit Prefetch(数据预取架构),因此DDR2 400的核心频率仅为100MHz,DDR2 533的核心频率为133MHz,因此DDR2很好的解决了DRAM核心频率和外部数据传输频率之间的问题。
从SDRAM开始,内存就可以和时钟同步,最初的SDRAM采用了管线架构(Pipeline architecture),首先是地址信号(Add)和时钟(CLK)同步,地址信号经过译码选取内存队列中相应的单元,内存队列中选中的数据通过内部数据总线输出到信号放大电路。SDRAM的信号输出部分也是和时钟信号同步的,这就好象一条连续的管线一样。由于全部操作都和时钟同步,因此也叫同步内存。
DDR采用了2位预取(2-bit prefetch),也就是2:1的数据预取,2bit预取架构允许内部的队列(column)工作频率仅仅为外部数据传输频率的一半。在SDRAM中数据传输率完全参考时钟信号,因此数据传输率和时钟频率一样。DDR2采了4位预取(4-bit prefetch),这就是DDR2提高数据传输率的关键,可以在不提高内部存储阵列频率的情况下提高数据输出带宽,未来的DDR3还有现在的RDRAM采用了8位数据预取。
相对于SDRAM,DDR扩展了原来SDRAM的设计。由于2bit Prefetch架构可以同存取两个bank的数据,使内部数据总线的带宽提高两倍,因此在内存的输出端可以在时钟信号的上升延和下降延传输数据,DDR的数据传输率是实际工作频率的两倍。DDR2通过使用4-bit预取架构来提高数据传输率,降低对内部bank频率的要求。采用4-bit prefetch架构使DDR2仅能使用两种数据突发传输长度(burst length),BL=4或BL=8。这个比较容易理解,因为DDR2一次存取4bit数据,所以数据突发长度也就成了4或8。
下面是DDR2和DDR主要思想的区别,实际上,这两种内存的差别不仅仅在带宽上。
除了带宽,这里还有一个重要的参数是延迟,就象我前面所说的,存储单元不会一直处于可用状态,因此它们要进行刷新操作。而且,即使存储单元可用,也不可能立即得到它的内存:这里还有其它类型的延迟,如设置行和列的地址,这此延迟都是不能避免的,它们由DRAM单元的本质所决定。
让我们看看会有那些延迟,例如内存阵列工作的时钟组合是2-2-2,如果内存阵列在所有的方案中以相同的频率工作,那么所有的模组都具有同样的延迟(我是说PC100,DDR200,DDR2-400)。它们仅仅是带宽的区别。顺便提一下,2-2-2组合的含义是:CAS延迟,RAS到CAS的延迟和RAS预充电时间。第一个数字是取得列地址的延迟时间,第二个数字是行和列地址之间的延迟,第三个数字是存储单元充电时间,预充电实际上是对行数据进行读操作。
但实际上,存储单元不会工作在相同的频率上,举例来说PC133就是一个使用非常普遍的SDRAM,它的DRAM单元工作在133MHz上。因此,DDR200虽然有着比PC133更高的带宽,但是它的相应延迟却更慢(内部阵列的工作频率仅100MHz),PC133的存储单元的频率要比DDR200存储单元的频率高33%。结果就是,DDR266才具有和PC133一样的延迟上的优势。
今天我们也看到类似的情形,DDR200和DDR2-400具有相同的延迟,而后者具有高一倍的带宽。实际上,DDR2-400和DDR400具有相同的带宽,它们都是3.2GB/s,但是,DDR400的存储阵列工作频率是200MHz,而DDR2-400的存储阵列工作频率是100MHz,也就是说DDR2-400的延迟要高于DDR400。
让我们来比较一下数字,以DDR400为例,我们通常设置2或者2.5个时钟延迟,有时是3。也就是10到15纳秒,对于DDR2-400,来计算一下它的延迟:核心工作在100MHz,具有2个时钟延迟,它意味着20ns的延迟,接口部分占用4个时钟延迟(不过接口工作的频率更高),结果就是DDR2模组的延迟将会是4-4-4个时钟周期,考虑到这里使用很低的核心频率,我们希望看到未来DDR2-400具有3-3-3的特征,但是即使如此,DDR2-400也是输给DDR400的。
内存的速度:内存的速度是以每笔CPU与内存间数据处理耗费的时间来计算,为总线循环(bus cycle)以纳秒(ns)为单位。
SIMM (Single In-line Memory Module):电路板上面焊有数目不等的记忆IC,可分为以下2种型态:
72PIN:72脚位的单面内存模块是用来支持32位的数据处理量。
30PIN:30脚位的单面内存模块是用来支持8位的数据处理量。
DIMM (Dual In-line Memory Module):(168PIN) 用来支持64位或是更宽的总线,而且只用3.3伏特的电压,通常用在64位的桌上型计算机或是服务器。
RIMM:RIMM模块是下一世代的内存模块主要规格之一,它是Intel公司于1999年推出芯片组所支持的内存模块,其频宽高达1.6Gbyte/sec。
Rambus 内存模块 (184PIN): 采用Direct RDRAM的内存模块,称之为RIMM模块,该模块有184pin脚,资料的输出方式为串行,与现行使用的DIMM模块168pin,并列输出的架构有很大的差异。
SO-DIMM (Small Outline Dual In-line Memory Module) (144PIN): 这是一种改良型的DIMM模块,比一般的DIMM模块来得小,应用于笔记型计算机、列表机、传真机或是各种终端机等。
PLL: 为锁相回路,用来统一整合时脉讯号,使内存能正确的存取资料。
6层板和4层板(6 layers V.S. 4 layers): 指的是电路印刷板PCB Printed Circuit Board用6层或4层的玻璃纤维做成,通常SDRAM会使用6层板,虽然会增加PCB的成本但却可免除噪声的干扰,而4层板虽可降低PCB的成本但效能较差。
Register:是缓存器的意思,其功能是能够在高速下达到同步的目的。
SPD:为Serial Presence Detect 的缩写,它是烧录在EEPROM内的码,以往开机时BIOS必须侦测memory,但有了SPD就不必再去作侦测的动作,而由BIOS直接读取 SPD取得内存的相关资料。
Parity和ECC的比较:同位检查码(parity check codes)被广泛地使用在侦错码(error detection codes)上,他们增加一个检查位给每个资料的字元(或字节),并且能够侦测到一个字符中所有奇(偶)同位的错误,但Parity有一个缺点,当计算机查到某个Byte有错误时,并不能确定错误在哪一个位,也就无法修正错误。
缓冲器和无缓冲器(Buffer V.S. Unbuffer):有缓冲器的DIMM 是用来改善时序(timing)问题的一种方法,无缓冲器的DIMM虽然可被设计用于系统上,但它只能支援四条DIMM。若将无缓冲器的DIMM用于速度为100Mhz的主机板上的话,将会有存取不良的影响。而有缓冲器的DIMM则可使用四条以上的内存,但是若使用的缓冲器速度不够快的话会影响其执行效果。换言之,有缓冲器的DIMM虽有速度变慢之虞,但它可以支持更多DIMM的使用。
自我刷新 (Self-Refresh):DRAM内部具有独立且内建的充电电路于一定时间内做自我充电, 通常用在笔记型计算机或可携式计算机等的省电需求高的计算机。
预充电时间 (CAS Latency):通常简称CL。例如CL=3,表示计算机系统自主存储器读取第一笔资料时,所需的准备时间为3个外部脉 (System clock)。CL2与CL3的差异仅在第一次读取资料所需准备时间,相差一个时脉,对整个系统的效能并无显著影响。
时钟信号 (Clock):时钟信号是提供给同步内存做讯号同步之用,同步记忆体的存取动作必需与时钟信号同步。
电子工程设计发展联合会议 (JEDEC):JEDEC大部分是由从事设计、发明的制造业尤以有关计算机记忆模块所组成的一个团体财团,一般工业所生产的记忆体产品大多以JEDEC所制定的标准为评量。
只读存储器ROM (Read Only Memory):ROM是一种只能读取而不能写入资料之记燱体,因为这个特所以最常见的就是主机板上的 BIOS (基本输入/输出系统Basic Input/Output System)因为BISO是计算机开机必备的基本硬件设定用来与外围做为低阶通信接口,所以BISO之程式烧录于ROM中以避免随意被清除资料。
EEPROM (Electrically Erasable Programmable ROM):为一种将资料写入后即使在电源关闭的情况下,也可以保留一段相当长的时间,且写入资料时不需要另外提高电压,只要写入某一些句柄,就可以把资料写入内存中了。
EPROM (Erasable Programmable ROM):为一种可以透过紫外线的照射将其内部的资料清除掉之后,再用烧录器之类的设备将资料烧录进 EPROM内,优点为可以重复的烧录资料。
程序规画的只读存储器 (PROM):是一种可存程序的内存,因为只能写一次资料,所以它一旦被写入资料若有错误,是无法改变的且无法再存其它资料,所以只要写错资料这颗内存就无法回收重新使用。
MASK ROM:是制造商为了要大量生产,事先制作一颗有原始数据的ROM或EPROM当作样本,然后再大量生产与样本一样的 ROM,这一种做为大量生产的ROM样本就是MASK ROM,而烧录在MASK ROM中的资料永远无法做修改。
随机存取内存RAM ( Random Access Memory):RAM是可被读取和写入的内存,我们在写资料到RAM记忆体时也同时可从RAM读取资料,这和ROM内存有所不同。但是RAM必须由稳定流畅的电力来保持它本身的稳定性,所以一旦把电源关闭则原先在RAM里头的资料将随之消失。
动态随机存取内存 DRAM (Dynamic Random Access Memory):DRAM 是Dynamic Random Access Memory 的缩写,通常是计算机内的主存储器,它是而用电容来做储存动作,但因电容本身有漏电问题,所以内存内的资料须持续地存取不然资料会不见。
FPM DRAM (Fast Page Mode DRAM):是改良的DRAM,大多数为72IPN或30PIN的模块,FPM 将记忆体内部隔成许多页数Pages,从512 bite 到数 Kilobytes 不等,它特色是不需等到重新读取时,就可读取各page内的料。
EDO DRAM (Extended Data Out DRAM):EDO的存取速度比传统DRAM快10%左右,比FPM快12到30倍一般为72PIN、168PIN的模块。
SDRAM:Synchronous DRAM 是一种新的DRAM架构的技术;它运用晶片内的clock使输入及输出能同步进行。所谓clock同步是指记忆体时脉与CPU的时脉能同步存取资料。SDRAM节省执行指令及数据传输的时间,故可提升计算机效率。
DDR:DDR 是一种更高速的同步内存,DDR SDRAM为168PIN的DIMM模块,它比SDRAM的传输速率更快, DDR的设计是应用在服务器、工作站及数据传输等较高速需求之系统。
DDRII (Double Data Rate Synchronous DRAM):DDRII 是DDR原有的SLDRAM联盟于1999年解散后将既有的研发成果与DDR整合之后的未来新标准。DDRII的详细规格目前尚未确定。
DRDRAM (Direct Rambus DRAM):是下一代的主流内存标准之一,由Rambus 公司所设计发展出来,是将所有的接脚都连结到一个共同的Bus,这样不但可以减少控制器的体积,已可以增加资料传送的效率。
RDRAM (Rambus DRAM):是由Rambus公司独立设计完成,它的速度约一般DRAM的10倍以上,虽有这样强的效能,但使用后内存控制器需要相当大的改变,所以目前这一类的内存大多使用在游戏机器或者专业的图形加速适配卡上。
VRAM (Video RAM):与DRAM最大的不同在于其有两组输出及输入口,所以可以同时一边读入,一边输出资料。
WRAM (Window RAM):属于VRAM的改良版,其不同之处在于其控制线路有一、二十组的输入/输出控制器,并采用EDO的资料存取模式。
MDRAM (Multi-Bank RAM):MIDRAM 的内部分成数个各别不同的小储存库 (BANK),也就是数个属立的小单位矩阵所构成。每个储存库之间以高于外部的资料速度相互连接,其应用于高速显示卡或加速卡中。
静态随机处理内存 SRAM (Static Random Access Memory):SRAM 是Static Random Access Memory 的缩写,通常比一般的动态随机处理内存处理速度更快更稳定。所谓静态的意义是指内存资料可以常驻而不须随时存取。因为此种特性,静态随机处理内存通常被用来做高速缓存。
Async SRAM:为异步SRAM这是一种较为旧型的SRAM,通常被用于电脑上的 Level 2 Cache上,它在运作时独立于计算机的系统时脉外。 Sync SRAM:为同步SRAM,它的工作时脉与系统是同步的。
SGRAM (Synchronous Graphics RAM):是由SDRAM再改良而成以区块Block为单位,个别地取回或修改存取的资料,减少内存整体读写的次数增加绘图控制器。
高速缓存 (Cache Ram):为一种高速度的内存是被设计用来处理运作CPU。快取记忆体是利用 SRAM 的颗粒来做内存。因连接方式不同可分为一是外接方式(External)另一种为内接方式(Internal)。外接方式是将内存放在主机板上也称为Level 1 Cache而内接方式是将内存放在CPU中称为Level 2 Cache。
PCMCIA (Personal Computer Memory Card International Association):是一种标准的卡片型扩充接口,多半用于笔记型计算机上或是其它外围产品,其种类可以分为:
Type 1:3.3mm的厚度,常作成SRAM、Flash RAM 的记忆卡以及最近打印机所使用的DRAM记忆卡。
Type 2:5.5mm的厚度,通常设计为笔记计算机所使用的调制解调器接口(Modem)。
Type 3:10.5mm的厚度,被运用为连接硬盘的ATA接口。
Type 4:小型的PCMCIA卡,大部用于数字相机。
FLASH:Flash内存比较像是一种储存装置,因为当电源关掉后储存在Flash内存中的资料并不会流失掉,在写入资料时必须先将原本的资料清除掉,然后才能再写入新的资料,缺点为写入资料的速度太慢。
重新标示过的内存模块(Remark Memory Module):在内存市场许多商家都会贩售重新标示过的内存模块,所谓重新标示过的内存模块就是将芯片Chip上的标示变更过,使其所显示出错误的讯息以提供商家赚取更多的利润。一般说来,业者会标示成较快的速度将( -7改成-6)或将没有厂牌的改为有厂牌的。要避免购买到这方面的产品,最佳的方法就是向好声誉的供货商来购买顶级芯片制造商产品。
内存的充电 (Refresh):主存储器是DRAM组合而成,其电容需不断充电以保持资料的正确。一般有2K与4K Refresh的分类,而2K比4K有较快速的Refresh但2K比4K耗电.
除非注明,文章均为宿迁波仔博客原创,转载请注明本文地址:http://wangboxyk.cn/post/Yingjian-Neicun-Memory.html
1.北桥芯片(MCH)
在CPU插座的左方是一个内存控制芯片,也叫北桥芯片、一般上面有一铝质的散热片。北桥芯片的主要功能是数据传输与信号控制。它一方面通过前端总线与CPU交换信号,另一方面又要与内存、AGP、南桥交换信号。北桥芯片坏了以后的现象多为机器不亮,有时亮后也不断死机。如果工程师判定你的北桥芯片坏了,再如果你的主板又比较老的话,基本上就没有什么维修的价值了。
2.南桥芯片(ICH4)
南桥芯片主要负责外部设备的数据处理与传输。比ICH4早的有ICH1、ICH2、ICH3,但它们不支持USB2.0。而ICH4支持USB2.0。区分它们也很简单:南桥芯片上有82801AB 82801BB 82801CB 82801DB,分别对应ICH1 ICH2 ICH3 ICH4。南桥芯片坏后的现象也多为机器不亮,某些外围设备不能用,比如IDE口、FDD口等不能用,也可能是南桥坏了。因为南北桥芯片比较贵,焊接又比较特殊,取下它们需要专门的BGA仪,所以一般的维修点无法修复南北桥。
3.BIOS芯片(FWH)
它是把一些直接的硬件信息固化在一个只读存储器内。是软件和硬件之间的重要接口。系统启动时首先从它这里调用一些硬件信息,它的性能直接影响着系统软件与硬件的兼容性。例如一些早期的主板不支持大于二十G的硬盘等问题,都可以通过升级BIOS来解决。我们日常便用时遇到的一些与新设备不兼容的问题也可以通过升级来解决。如果你的主板突然不亮了,而CPU风扇仍在转动,那么你首先应该考虑BIOS芯片是否损坏。
4.系统时钟发生器(CLK)
在主板的中间位置有个晶振元件,它会产生一系列高频脉冲波,这些原始的脉冲波再输入到时钟发生器芯片内,经过整形与分频,然后分配给计算机需要的各种频率。
5.超级输入输出接口芯片(I/O)
它一般位于主板的左下方或左上方,主要芯片有Winbond 与ITE,它负责把键盘、鼠标、串口进来的串行数据转化为并行数据。同时也对并口与软驱口的数据进行处理。在我们的维修现场,诸如键盘与鼠标口坏,打印口坏等一些外设不能用,多为I/O芯片坏,有时甚至造成机器不亮的现象。
6.声卡芯片
因为现在的主板多数都集成了声卡,而且集成的多为AC’97声卡芯片。当然,也有CMI的8738声卡芯片等。