目标识别小样本数据扩增

1 对DOTA(obb)数据增加(方法有:改变亮度,加噪声,旋转角度,镜像,平移,裁剪,cutout)

"""
2019.8.3 : 数据增强(dota4点转换)
"""
# -*- coding=utf-8 -*-
# 包括:
#     6. 裁剪(需改变bbox)
#     5. 平移(需改变bbox)
#     1. 改变亮度
#     2. 加噪声
#     3. 旋转角度(需要改变bbox)
#     4. 镜像(需要改变bbox)
#     7. cutout
# 注意:
#     random.seed(),相同的seed,产生的随机数是一样的!!
import time
import random
import cv2 as cv
import os
import math
import numpy as np
from skimage.util import random_noise
from skimage import exposure
import shutil
import imutils


# 调整亮度
def changeLight(img,inputtxt,outputiamge,outputtxt):

    # random.seed(int(time.time()))
    flag = random.uniform(0.5, 1.5)  # flag>1为调暗,小于1为调亮
    label=round(flag,2)
    (filepath, tempfilename) = os.path.split(inputtxt)
    (filename, extension) = os.path.splitext(tempfilename)
    outputiamge=os.path.join(outputiamge+"/"+filename+"_"+str(label)+".jpg")
    outputtxt=os.path.join(outputtxt+"/"+filename+"_"+str(label)+extension)

    ima_gamma=exposure.adjust_gamma(img, 0.5)

    shutil.copyfile(inputtxt, outputtxt)
    cv.imwrite(outputiamge,ima_gamma)

# 加噪声
def gasuss_noise(image,inputtxt,outputiamge,outputtxt,mean=0, var=0.01):
    '''
        添加高斯噪声
        mean : 均值
        var : 方差
    '''
    image = np.array(image/255, dtype=float)
    noise = np.random.normal(mean, var ** 0.5, image.shape)
    out = image + noise

    if out.min() < 0:
        low_clip = -1.
    else:
        low_clip = 0.
    out = np.clip(out, low_clip, 1.0)
    out = np.uint8(out*255)

    (filepath, tempfilename) = os.path.split(inputtxt)
    (filename, extension) = os.path.splitext(tempfilename)
    outputiamge = os.path.join(outputiamge + "/" + filename + "_gasunoise_" + str(mean)+"_"+str(var)+ ".jpg")
    outputtxt = os.path.join(outputtxt + "/" +  filename + "_gasunoise_" + str(mean)+"_"+str(var)+ extension)

    shutil.copyfile(inputtxt, outputtxt)
    cv.imwrite(outputiamge, out)

#对比度调整算法
def ContrastAlgorithm(rgb_img,inputtxt, outputiamge, outputtxt):
   img_shape=rgb_img.shape
   temp_imag=np.zeros(img_shape, dtype=float)
   for num in range(0,3):
       # 通过直方图正规化增强对比度

       in_image =rgb_img[:,:,num]
       # 求输入图片像素最大值和最小值
       Imax = np.max(in_image)
       Imin = np.min(in_image)
       # 要输出的最小灰度级和最大灰度级
       Omin, Omax = 0, 255
       # 计算a 和 b的值
       a = float(Omax - Omin) / (Imax - Imin)
       b = Omin - a * Imin
       # 矩阵的线性变化
       out_image = a * in_image + b
       # 数据类型的转化
       out_image = out_image.astype(np.uint8)
       temp_imag[:,:,num]=out_image
   (filepath, tempfilename) = os.path.split(inputtxt)
   (filename, extension) = os.path.splitext(tempfilename)
   outputiamge = os.path.join(outputiamge + "/" + filename + "_contrastAlgorithm"  + ".jpg")
   outputtxt = os.path.join(outputtxt + "/" + filename + "_contrastAlgorithm"  + extension)
   shutil.copyfile(inputtxt, outputtxt)
   cv.imwrite(outputiamge, temp_imag)


# 旋转
def rotate_img_bbox(img, inputtxt,temp_outputiamge,temp_outputtxt,angle,scale=1):
    nAgree=angle
    size=img.shape
    w=size[1]
    h=size[0]
    for numAngle in range(0,len(nAgree)):
        dRot = nAgree[numAngle] * np.pi / 180
        dSinRot = math.sin(dRot)
        dCosRot = math.cos(dRot)

        nw = (abs(np.sin(dRot) * h) + abs(np.cos(dRot) * w)) * scale
        nh = (abs(np.cos(dRot) * h) + abs(np.sin(dRot) * w)) * scale

        (filepath, tempfilename) = os.path.split(inputtxt)
        (filename, extension) = os.path.splitext(tempfilename)
        outputiamge = os.path.join(temp_outputiamge + "/" + filename + "_rotate_" + str(nAgree[numAngle])+ ".jpg")
        outputtxt = os.path.join(temp_outputtxt + "/" + filename + "_rotate_" + str(nAgree[numAngle])+ extension)

        rot_mat = cv.getRotationMatrix2D((nw * 0.5, nh * 0.5), nAgree[numAngle], scale)
        rot_move = np.dot(rot_mat, np.array([(nw - w) * 0.5, (nh - h) * 0.5, 0]))
        rot_mat[0, 2] += rot_move[0]
        rot_mat[1, 2] += rot_move[1]
        # 仿射变换
        rotat_img = cv.warpAffine(img, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv.INTER_LANCZOS4)
        cv.imwrite(outputiamge,rotat_img)

        save_txt=open(outputtxt,'w')
        f = open(inputtxt)
        for line in f.readlines():
            line= line.split(" ")
            x1=float(line[0])
            y1=float(line[1])
            x2 = float(line[2])
            y2 = float(line[3])
            x3 = float(line[4])
            y3 = float(line[5])
            x4 = float(line[6])
            y4 = float(line[7])
            category=str(line[8])

            point1 = np.dot(rot_mat, np.array([x1, y1, 1]))
            point2 = np.dot(rot_mat, np.array([x2, y2, 1]))
            point3 = np.dot(rot_mat, np.array([x3, y3, 1]))
            point4 = np.dot(rot_mat, np.array([x4, y4, 1]))
            x1=round(point1[0],3)
            y1 = round(point1[1], 3)
            x2 = round(point2[0], 3)
            y2 = round(point2[1], 3)
            x3 = round(point3[0], 3)
            y3 = round(point3[1], 3)
            x4 = round(point4[0], 3)
            y4 = round(point4[1], 3)
            string = str(x1) + " " + str(y1) + " " + str(x2) + " " + str(y2) + " " + str(x3) + " " + str(
                y3) + " " + str(x4) + " " + str(y4)+" "+category
            save_txt.write(string)

def filp_pic_bboxes(img, inputtxt,outputiamge,outputtxt):
    # ---------------------- 翻转图像 ----------------------
    (filepath, tempfilename) = os.path.split(inputtxt)
    (filename, extension) = os.path.splitext(tempfilename)
    output_vert_flip_img = os.path.join(outputiamge + "/" + filename + "_vert_flip" + ".jpg")
    output_vert_flip_txt = os.path.join(outputtxt + "/" + filename + "_vert_flip"  + extension)
    output_horiz_flip_img = os.path.join(outputiamge + "/" + filename + "_horiz_flip" + ".jpg")
    output_horiz_flip_txt = os.path.join(outputtxt + "/" + filename + "_horiz_flip" + extension)

    h,w,_ = img.shape
    #垂直翻转
    vert_flip_img =  cv.flip(img, 1)
    cv.imwrite(output_vert_flip_img,vert_flip_img)
    # 水平翻转
    horiz_flip_img = cv.flip(img, 0)
    cv.imwrite(output_horiz_flip_img,horiz_flip_img)
    # ---------------------- 调整boundingbox ----------------------

    save_vert_txt = open(output_vert_flip_txt, 'w')
    save_horiz_txt = open(output_horiz_flip_txt, 'w')
    f = open(inputtxt)
    for line in f.readlines():
        line = line.split(" ")
        x1 = float(line[0])
        y1 = float(line[1])
        x2 = float(line[2])
        y2 = float(line[3])
        x3 = float(line[4])
        y3 = float(line[5])
        x4 = float(line[6])
        y4 = float(line[7])
        category = str(line[8])


        horiz_string = str(round(w-x1,3)) + " " + str(y1) + " " + str(round(w-x2,3)) + " " + str(y2) + " " + str(round(w-x3,3)) + " " + str(y3) + " " + str(
            round(w - x4, 3)) + " " + str(y4) + " " + category
        vert_string = str(x1) + " " + str(round(h-y1,3)) + " " + str(x2) + " " + str(round(h-y2,3)) + " " + str(x3) + " " + str(
            round(h - y3, 3)) + " " + str(x4) + " " + str(round(h-y4,3)) + " " + category

        save_horiz_txt.write(vert_string)
        save_vert_txt.write(horiz_string)

#平移图像
def shift_pic_bboxes(img, inputtxt,outputiamge,outputtxt):
    # ---------------------- 平移图像 ----------------------
    w = img.shape[1]
    h = img.shape[0]
    x_min = w  # 裁剪后的包含所有目标框的最小的框
    x_max = 0
    y_min = h
    y_max = 0
    f = open(inputtxt)
    for line in f.readlines():
        line = line.split(" ")
        x1 = float(line[0])
        y1 = float(line[1])
        x2 = float(line[2])
        y2 = float(line[3])
        x3 = float(line[4])
        y3 = float(line[5])
        x4 = float(line[6])
        y4 = float(line[7])
        category = str(line[8])

        x_min = min(x_min, x1,x2,x3,x4)
        y_min = min(y_min, y1,y2,y3,y4)
        x_max = max(x_max, x1,x2,x3,x4)
        y_max = max(y_max, y1,y2,y3,y4)

    d_to_left = x_min  # 包含所有目标框的最大左移动距离
    d_to_right = w - x_max  # 包含所有目标框的最大右移动距离
    d_to_top = y_min  # 包含所有目标框的最大上移动距离
    d_to_bottom = h - y_max  # 包含所有目标框的最大下移动距离

    x = random.uniform(-(d_to_left - 1) / 3, (d_to_right - 1) / 3)
    y = random.uniform(-(d_to_top - 1) / 3, (d_to_bottom - 1) / 3)

    (filepath, tempfilename) = os.path.split(inputtxt)
    (filename, extension) = os.path.splitext(tempfilename)
    if x>=0 and y>=0 :
        outputiamge = os.path.join(outputiamge + "/" + filename + "_shift_" + str(round(x,3))+"_"+str(round(y,3)) + ".jpg")
        outputtxt = os.path.join(outputtxt + "/" + filename + "_shift_" + str(round(x,3))+"_"+str(round(y,3)) + extension)
    elif x>=0 and y<0:
        outputiamge = os.path.join(
            outputiamge + "/" + filename + "_shift_" + str(round(x, 3)) + "__" + str(round(abs(y), 3)) + ".jpg")
        outputtxt = os.path.join(
            outputtxt + "/" + filename + "_shift_" + str(round(x, 3)) + "__" + str(round(abs(y), 3)) + extension)
    elif x<0 and y>=0:
        outputiamge = os.path.join(
            outputiamge + "/" + filename + "_shift__" + str(round(abs(x), 3)) + "_" + str(round(y, 3)) + ".jpg")
        outputtxt = os.path.join(
            outputtxt + "/" + filename + "_shift__" + str(round(abs(x), 3)) + "_" + str(round(y, 3)) + extension)
    elif x<0 and y<0:
        outputiamge = os.path.join(
            outputiamge + "/" + filename + "_shift__" + str(round(abs(x), 3)) + "__" + str(round(abs(y), 3)) + ".jpg")
        outputtxt = os.path.join(
            outputtxt + "/" + filename + "_shift__" + str(round(abs(x), 3)) + "__" + str(round(abs(y), 3)) + extension)

    M = np.float32([[1, 0, x], [0, 1, y]])  # x为向左或右移动的像素值,正为向右负为向左; y为向上或者向下移动的像素值,正为向下负为向上
    shift_img = cv.warpAffine(img, M, (img.shape[1], img.shape[0]))
    cv.imwrite(outputiamge,shift_img)
    # ---------------------- 平移boundingbox ----------------------
    save_txt=open(outputtxt,"w")
    f = open(inputtxt)
    for line in f.readlines():
        line = line.split(" ")
        x1 = float(line[0])
        y1 = float(line[1])
        x2 = float(line[2])
        y2 = float(line[3])
        x3 = float(line[4])
        y3 = float(line[5])
        x4 = float(line[6])
        y4 = float(line[7])
        category = str(line[8])
        shift_str=str(round(x1+x,3))+" "+str(round(y1+y,3))+" "+str(round(x2+x,3))+" "+str(round(y2+y,3))\
                  +" "+str(round(x3+x,3))+" "+str(round(y3+y,3))+" "+str(round(x4+x,3))+" "+str(round(y4+y,3))+" "+category
        save_txt.write(shift_str)

#裁剪
def crop_img_bboxes(img, inputtxt,outputiamge,outputtxt):
    # ---------------------- 裁剪图像 ----------------------
    w = img.shape[1]
    h = img.shape[0]
    x_min = w  # 裁剪后的包含所有目标框的最小的框
    x_max = 0
    y_min = h
    y_max = 0
    f = open(inputtxt)
    for line in f.readlines():
        line = line.split(" ")
        x1 = float(line[0])
        y1 = float(line[1])
        x2 = float(line[2])
        y2 = float(line[3])
        x3 = float(line[4])
        y3 = float(line[5])
        x4 = float(line[6])
        y4 = float(line[7])
        category = str(line[8])

        x_min = min(x_min, x1, x2, x3, x4)
        y_min = min(y_min, y1, y2, y3, y4)
        x_max = max(x_max, x1, x2, x3, x4)
        y_max = max(y_max, y1, y2, y3, y4)

    d_to_left = x_min  # 包含所有目标框的最小框到左边的距离
    d_to_right = w - x_max  # 包含所有目标框的最小框到右边的距离
    d_to_top = y_min  # 包含所有目标框的最小框到顶端的距离
    d_to_bottom = h - y_max  # 包含所有目标框的最小框到底部的距离
    # 随机扩展这个最小框
    crop_x_min = int(x_min - random.uniform(0, d_to_left))
    crop_y_min = int(y_min - random.uniform(0, d_to_top))
    crop_x_max = int(x_max + random.uniform(0, d_to_right))
    crop_y_max = int(y_max + random.uniform(0, d_to_bottom))
    # 随机扩展这个最小框 , 防止别裁的太小
    # crop_x_min = int(x_min - random.uniform(d_to_left//2, d_to_left))
    # crop_y_min = int(y_min - random.uniform(d_to_top//2, d_to_top))
    # crop_x_max = int(x_max + random.uniform(d_to_right//2, d_to_right))
    # crop_y_max = int(y_max + random.uniform(d_to_bottom//2, d_to_bottom))
    # 确保不要越界
    crop_x_min = max(0, crop_x_min)
    crop_y_min = max(0, crop_y_min)
    crop_x_max = min(w, crop_x_max)
    crop_y_max = min(h, crop_y_max)
    crop_img = img[crop_y_min:crop_y_max, crop_x_min:crop_x_max]

    (filepath, tempfilename) = os.path.split(inputtxt)
    (filename, extension) = os.path.splitext(tempfilename)
    outputiamge = os.path.join(outputiamge + "/" + filename + "_crop_" + str(crop_x_min) + "_" +
                               str(crop_y_min) + "_"+str(crop_x_max) + "_" +
                               str(crop_y_max) +".jpg")
    outputtxt = os.path.join(outputtxt + "/" + filename + "_crop_" + str(crop_x_min) + "_" +
                               str(crop_y_min) + "_"+str(crop_x_max) + "_" +
                               str(crop_y_max)  + extension)
    cv.imwrite(outputiamge,crop_img)
    # ---------------------- 裁剪boundingbox ----------------------
    # 裁剪后的boundingbox坐标计算
    save_txt = open(outputtxt, "w")
    f = open(inputtxt)
    for line in f.readlines():
        line = line.split(" ")
        x1 = float(line[0])
        y1 = float(line[1])
        x2 = float(line[2])
        y2 = float(line[3])
        x3 = float(line[4])
        y3 = float(line[5])
        x4 = float(line[6])
        y4 = float(line[7])
        category = str(line[8])
        crop_str = str(round(x1-crop_x_min, 3)) + " " + str(round(y1-crop_y_min, 3)) + " " + str(round(x2-crop_x_min, 3)) + " " + str(\
            round(y2-crop_y_min, 3)) + " " + str(round(x3-crop_x_min, 3)) + " " + str(round(y3-crop_y_min, 3)) + " " + str(\
            round(x4-crop_x_min, 3)) + " " + str(round(y4-crop_y_min, 3)) + " " + category
        save_txt.write(crop_str)

if __name__=='__main__':
    inputiamge="/data/maq/DataSet/guigang/split_data_overlap512/agumnet_data/images"
    inputtxt = "/data/maq/DataSet/guigang/split_data_overlap512/agumnet_data/labels"
    outputiamge = "/data/maq/DataSet/guigang/split_data_overlap512/agumnet_data/images"
    outputtxt = "/data/maq/DataSet/guigang/split_data_overlap512/agumnet_data/labels"
    angle=[30,60,90,120,150,180]
    tempfilename=os.listdir(inputiamge)
    for file in tempfilename:
        (filename,extension)=os.path.splitext(file)
        input_image=os.path.join(inputiamge+"/"+file)
        input_txt=os.path.join(inputtxt+"/"+filename+".txt")

        img = cv.imread(input_image)
        #图像亮度变化
        #changeLight(img,input_txt,outputiamge,outputtxt)
        #加高斯噪声
        #gasuss_noise(img, input_txt, outputiamge, outputtxt, mean=0, var=0.001)
        #改变图像对比度
        #ContrastAlgorithm(img, input_txt, outputiamge, outputtxt)
        #图像旋转
        #rotate_img_bbox(img, input_txt, outputiamge, outputtxt, angle)
        #图像镜像
        filp_pic_bboxes(img, input_txt, outputiamge, outputtxt)
        #平移
        #shift_pic_bboxes(img, input_txt, outputiamge, outputtxt)
        #剪切
        #crop_img_bboxes(img, input_txt, outputiamge, outputtxt)
    print("###finished!!!")

 

 

   

你可能感兴趣的:(深度学习)