转自:https://handong1587.github.io/deep_learning/2015/10/09/dl-resources.html
ImageNet
Single-model on 224x224
Method |
top1 |
top5 |
Model Size |
Speed |
ResNet-101 |
78.0% |
94.0% |
|
|
ResNet-200 |
78.3% |
94.2% |
|
|
Inception-v3 |
|
|
|
|
Inception-v4 |
|
|
|
|
Inception-ResNet-v2 |
|
|
|
|
ResNet-50 |
77.8% |
|
|
|
ResNet-101 |
79.6% |
94.7% |
|
|
Single-model on 320×320 / 299×299
Method |
top1 |
top5 |
Model Size |
Speed |
ResNet-101 |
|
|
|
|
ResNet-200 |
79.9% |
95.2% |
|
|
Inception-v3 |
78.8% |
94.4% |
|
|
Inception-v4 |
80.0% |
95.0% |
|
|
Inception-ResNet-v2 |
80.1% |
95.1% |
|
|
ResNet-50 |
|
|
|
|
ResNet-101 |
80.9% |
95.6% |
|
|
AlexNet
ImageNet Classification with Deep Convolutional Neural Networks
- nips-page: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
- paper: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
- slides: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
- code: https://code.google.com/p/cuda-convnet/
- github: https://github.com/dnouri/cuda-convnet
- code: https://code.google.com/p/cuda-convnet2/
Network In Network
Network In Network
- intro: ICLR 2014
- arxiv: http://arxiv.org/abs/1312.4400
- gitxiv: http://gitxiv.com/posts/PA98qGuMhsijsJzgX/network-in-network-nin
- code(Caffe, official): https://gist.github.com/mavenlin/d802a5849de39225bcc6
Batch-normalized Maxout Network in Network
- arxiv: http://arxiv.org/abs/1511.02583
GoogLeNet (Inception V1)
Going Deeper with Convolutions
- arxiv: http://arxiv.org/abs/1409.4842
- github: https://github.com/google/inception
- github: https://github.com/soumith/inception.torch
Building a deeper understanding of images
- blog: http://googleresearch.blogspot.jp/2014/09/building-deeper-understanding-of-images.html
VGGNet
Very Deep Convolutional Networks for Large-Scale Image Recognition
- homepage: http://www.robots.ox.ac.uk/~vgg/research/very_deep/
- arxiv: http://arxiv.org/abs/1409.1556
- slides: http://llcao.net/cu-deeplearning15/presentation/cc3580_Simonyan.pptx
- slides: http://www.robots.ox.ac.uk/~karen/pdf/ILSVRC_2014.pdf
- slides: http://deeplearning.cs.cmu.edu/slides.2015/25.simonyan.pdf
- github(official, deprecated Caffe API): https://gist.github.com/ksimonyan/211839e770f7b538e2d8
- github: https://github.com/ruimashita/caffe-train
Tensorflow VGG16 and VGG19
- github: https://github.com/machrisaa/tensorflow-vgg
Inception-V2
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
- intro: ImageNet top-5 error: 4.82%
- keywords: internal covariate shift problem
- arxiv: http://arxiv.org/abs/1502.03167
- blog: https://standardfrancis.wordpress.com/2015/04/16/batch-normalization/
- notes: http://blog.csdn.net/happynear/article/details/44238541
- github: https://github.com/lim0606/caffe-googlenet-bn
ImageNet pre-trained models with batch normalization
- arxiv: https://arxiv.org/abs/1612.01452
- project page: http://www.inf-cv.uni-jena.de/Research/CNN+Models.html
- github: https://github.com/cvjena/cnn-models
Inception-V3
Inception-V3 = Inception-V2 + BN-auxiliary (fully connected layer of the auxiliary classifier is also batch-normalized, not just the convolutions)
Rethinking the Inception Architecture for Computer Vision
- intro: “21.2% top-1 and 5.6% top-5 error for single frame evaluation using a network; 3.5% top-5 error and 17.3% top-1 error With an ensemble of 4 models and multi-crop evaluation.”
- arxiv: http://arxiv.org/abs/1512.00567
- github: https://github.com/Moodstocks/inception-v3.torch
Inception in TensorFlow
- intro: demonstrate how to train the Inception v3 architecture
- github: https://github.com/tensorflow/models/tree/master/inception
Train your own image classifier with Inception in TensorFlow
- intro: Inception-v3
- blog: https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html
Notes on the TensorFlow Implementation of Inception v3
https://pseudoprofound.wordpress.com/2016/08/28/notes-on-the-tensorflow-implementation-of-inception-v3/
Training an InceptionV3-based image classifier with your own dataset
- github: https://github.com/danielvarga/keras-finetuning
Inception-BN full for Caffe: Inception-BN ImageNet (21K classes) model for Caffe
- github: https://github.com/pertusa/InceptionBN-21K-for-Caffe
ResNet
Deep Residual Learning for Image Recognition
- intro: CVPR 2016 Best Paper Award
- arxiv: http://arxiv.org/abs/1512.03385
- slides: http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
- gitxiv: http://gitxiv.com/posts/LgPRdTY3cwPBiMKbm/deep-residual-learning-for-image-recognition
- github: https://github.com/KaimingHe/deep-residual-networks
- github: https://github.com/ry/tensorflow-resnet
Third-party re-implementations
https://github.com/KaimingHe/deep-residual-networks#third-party-re-implementations
Training and investigating Residual Nets
- intro: Facebook AI Research
- blog: http://torch.ch/blog/2016/02/04/resnets.html
- github: https://github.com/facebook/fb.resnet.torch
resnet.torch: an updated version of fb.resnet.torch with many changes.
- github: https://github.com/erogol/resnet.torch
Highway Networks and Deep Residual Networks
- blog: http://yanran.li/peppypapers/2016/01/10/highway-networks-and-deep-residual-networks.html
Interpretating Deep Residual Learning Blocks as Locally Recurrent Connections
- blog: https://matrixmashing.wordpress.com/2016/01/29/interpretating-deep-residual-learning-blocks-as-locally-recurrent-connections/
Lab41 Reading Group: Deep Residual Learning for Image Recognition
- blog: https://gab41.lab41.org/lab41-reading-group-deep-residual-learning-for-image-recognition-ffeb94745a1f
50-layer ResNet, trained on ImageNet, classifying webcam
- homepage: https://ml4a.github.io/demos/keras.js/
Reproduced ResNet on CIFAR-10 and CIFAR-100 dataset.
- github: https://github.com/tensorflow/models/tree/master/resnet
ResNet-V2
Identity Mappings in Deep Residual Networks
- intro: ECCV 2016. ResNet-v2
- arxiv: http://arxiv.org/abs/1603.05027
- github: https://github.com/KaimingHe/resnet-1k-layers
- github: https://github.com/tornadomeet/ResNet
Deep Residual Networks for Image Classification with Python + NumPy
- blog: https://dnlcrl.github.io/projects/2016/06/22/Deep-Residual-Networks-for-Image-Classification-with-Python+NumPy.html
Inception-V4 / Inception-ResNet-V2
Inception-V4, Inception-Resnet And The Impact Of Residual Connections On Learning
- intro: Workshop track - ICLR 2016. 3.08 % top-5 error on ImageNet CLS
- intro: “achieve 3.08% top-5 error on the test set of the ImageNet classification (CLS) challenge”
- arxiv: http://arxiv.org/abs/1602.07261
- github(Keras): https://github.com/kentsommer/keras-inceptionV4
The inception-resnet-v2 models trained from scratch via torch
- github: https://github.com/lim0606/torch-inception-resnet-v2
Inception v4 in Keras
- intro: Inception-v4, Inception - Resnet-v1 and v2
- github: https://github.com/titu1994/Inception-v4
ResNeXt
Aggregated Residual Transformations for Deep Neural Networks
- intro: CVPR 2017. UC San Diego & Facebook AI Research
- arxiv: https://arxiv.org/abs/1611.05431
- github(Torch): https://github.com/facebookresearch/ResNeXt
- github: https://github.com/dmlc/mxnet/blob/master/example/image-classification/symbol/resnext.py
- dataset: http://data.dmlc.ml/models/imagenet/resnext/
- reddit: https://www.reddit.com/r/MachineLearning/comments/5haml9/p_implementation_of_aggregated_residual/
Residual Networks Variants
Resnet in Resnet: Generalizing Residual Architectures
- paper: http://beta.openreview.net/forum?id=lx9l4r36gU2OVPy8Cv9g
- arxiv: http://arxiv.org/abs/1603.08029
Residual Networks are Exponential Ensembles of Relatively Shallow Networks
- arxiv: http://arxiv.org/abs/1605.06431
Wide Residual Networks
- intro: BMVC 2016
- arxiv: http://arxiv.org/abs/1605.07146
- github: https://github.com/szagoruyko/wide-residual-networks
- github: https://github.com/asmith26/wide_resnets_keras
- github: https://github.com/ritchieng/wideresnet-tensorlayer
- github: https://github.com/xternalz/WideResNet-pytorch
- github(Torch): https://github.com/meliketoy/wide-residual-network
Residual Networks of Residual Networks: Multilevel Residual Networks
- arxiv: http://arxiv.org/abs/1608.02908
Multi-Residual Networks
- arxiv: http://arxiv.org/abs/1609.05672
- github: https://github.com/masoudabd/multi-resnet
Deep Pyramidal Residual Networks
- intro: PyramidNet
- arxiv: https://arxiv.org/abs/1610.02915
- github: https://github.com/jhkim89/PyramidNet
Learning Identity Mappings with Residual Gates
- arxiv: https://arxiv.org/abs/1611.01260
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition
- intro: image classification, semantic image segmentation
- arxiv: https://arxiv.org/abs/1611.10080
- github: https://github.com/itijyou/ademxapp
Deep Pyramidal Residual Networks with Separated Stochastic Depth
- arxiv: https://arxiv.org/abs/1612.01230
Spatially Adaptive Computation Time for Residual Networks
- intro: Higher School of Economics & Google & CMU
- arxiv: https://arxiv.org/abs/1612.02297
ShaResNet: reducing residual network parameter number by sharing weights
- arxiv: https://arxiv.org/abs/1702.08782
- github: https://github.com/aboulch/sharesnet
Sharing Residual Units Through Collective Tensor Factorization in Deep Neural Networks
- intro: Collective Residual Networks
- arxiv: https://arxiv.org/abs/1703.02180
- github(MXNet): https://github.com/cypw/CRU-Net
Residual Attention Network for Image Classification
- intro: CVPR 2017 Spotlight. SenseTime Group Limited & Tsinghua University & The Chinese University of Hong Kong
- intro: ImageNet (4.8% single model and single crop, top-5 error)
- arxiv: https://arxiv.org/abs/1704.06904
- github(Caffe): https://github.com/buptwangfei/residual-attention-network
Dilated Residual Networks
- intro: CVPR 2017. Princeton University & Intel Labs
- keywords: Dilated Residual Networks (DRN)
- project page: http://vladlen.info/publications/dilated-residual-networks/
- arxiv: https://arxiv.org/abs/1705.09914
- paper: http://vladlen.info/papers/DRN.pdf
Dynamic Steerable Blocks in Deep Residual Networks
- intro: University of Amsterdam & ESAT-PSI
- arxiv: https://arxiv.org/abs/1706.00598
Learning Deep ResNet Blocks Sequentially using Boosting Theory
- intro: Microsoft Research & Princeton University
- arxiv: https://arxiv.org/abs/1706.04964
Learning Strict Identity Mappings in Deep Residual Networks
- keywords: epsilon-ResNet
- arxiv: https://arxiv.org/abs/1804.01661
Spiking Deep Residual Network
https://arxiv.org/abs/1805.01352
Norm-Preservation: Why Residual Networks Can Become Extremely Deep?
- intro: University of Central Florida
- arxiv: https://arxiv.org/abs/1805.07477
DenseNet
Densely Connected Convolutional Networks
- intro: CVPR 2017 best paper. Cornell University & Tsinghua University. DenseNet
- arxiv: http://arxiv.org/abs/1608.06993
- github: https://github.com/liuzhuang13/DenseNet
- github(Lasagne): https://github.com/Lasagne/Recipes/tree/master/papers/densenet
- github(Keras): https://github.com/tdeboissiere/DeepLearningImplementations/tree/master/DenseNet
- github(Caffe): https://github.com/liuzhuang13/DenseNetCaffe
- github(Tensorflow): https://github.com/YixuanLi/densenet-tensorflow
- github(Keras): https://github.com/titu1994/DenseNet
- github(PyTorch): https://github.com/bamos/densenet.pytorch
- github(PyTorch): https://github.com/andreasveit/densenet-pytorch
- github(Tensorflow): https://github.com/ikhlestov/vision_networks
Memory-Efficient Implementation of DenseNets
- intro: Cornell University & Fudan University & Facebook AI Research
- arxiv: https://arxiv.org/abs/1707.06990
- github: https://github.com/liuzhuang13/DenseNet/tree/master/models
- github: https://github.com/gpleiss/efficient_densenet_pytorch
- github: https://github.com/taineleau/efficient_densenet_mxnet
- github: https://github.com/Tongcheng/DN_CaffeScript
DenseNet 2.0
CondenseNet: An Efficient DenseNet using Learned Group Convolutions
- arxiv: https://arxiv.org/abs/1711.09224
- github: https://github.com//ShichenLiu/CondenseNet
Xception
Deep Learning with Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
- intro: CVPR 2017. Extreme Inception
- arxiv: https://arxiv.org/abs/1610.02357
- code: https://keras.io/applications/#xception
- github(Keras): https://github.com/fchollet/deep-learning-models/blob/master/xception.py
- github: https://gist.github.com/culurciello/554c8e56d3bbaf7c66bf66c6089dc221
- github: https://github.com/kwotsin/Tensorflow-Xception
- github: https://github.com//bruinxiong/xception.mxnet
- notes: http://www.shortscience.org/paper?bibtexKey=journals%2Fcorr%2F1610.02357
Towards a New Interpretation of Separable Convolutions
- arxiv: https://arxiv.org/abs/1701.04489
MobileNets
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
- intro: Google
- arxiv: https://arxiv.org/abs/1704.04861
- github: https://github.com/rcmalli/keras-mobilenet
- github: https://github.com/marvis/pytorch-mobilenet
- github(Tensorflow): https://github.com/Zehaos/MobileNet
- github: https://github.com/shicai/MobileNet-Caffe
- github: https://github.com/hollance/MobileNet-CoreML
- github: https://github.com/KeyKy/mobilenet-mxnet
MobileNets: Open-Source Models for Efficient On-Device Vision
- blog: https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
- github: https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.md
Google’s MobileNets on the iPhone
- blog: http://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/
- github: https://github.com/hollance/MobileNet-CoreML
Depth_conv-for-mobileNet
https://github.com//LamHoCN/Depth_conv-for-mobileNet
The Enhanced Hybrid MobileNet
https://arxiv.org/abs/1712.04698
FD-MobileNet: Improved MobileNet with a Fast Downsampling Strategy
https://arxiv.org/abs/1802.03750
A Quantization-Friendly Separable Convolution for MobileNets
- intro: THE 1ST WORKSHOP ON ENERGY EFFICIENT MACHINE LEARNING AND COGNITIVE COMPUTING FOR EMBEDDED APPLICATIONS (EMC2)
- arxiv: https://arxiv.org/abs/1803.08607
MobileNetV2
Inverted Residuals and Linear Bottlenecks: Mobile Networks forClassification, Detection and Segmentation
- intro: Google
- keywords: MobileNetV2, SSDLite, DeepLabv3
- arxiv: https://arxiv.org/abs/1801.04381
- github: https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
- github: https://github.com/liangfu/mxnet-mobilenet-v2
- blog: https://research.googleblog.com/2018/04/mobilenetv2-next-generation-of-on.html
ShuffleNet
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
- intro: Megvii Inc (Face++)
- arxiv: https://arxiv.org/abs/1707.01083
ShuffleNet V2
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
- intro: ECCV 2018. Megvii Inc (Face++) & Tsinghua University
- arxiv: [https://arxiv.org/abs/1807.11164](https://arxiv.org/abs/1807.11164
SENet
Squeeze-and-Excitation Networks
- intro: ILSVRC 2017 image classification winner. Momenta & University of Oxford
- arxiv: https://arxiv.org/abs/1709.01507
- github(official, Caffe): https://github.com/hujie-frank/SENet
- github: https://github.com/bruinxiong/SENet.mxnet
Competitive Inner-Imaging Squeeze and Excitation for Residual Network
- arxiv: https://arxiv.org/abs/1807.08920
- github: https://github.com/scut-aitcm/CompetitiveSENet
ImageNet Projects
Training an Object Classifier in Torch-7 on multiple GPUs over ImageNet
- intro: an imagenet example in torch
- github: https://github.com/soumith/imagenet-multiGPU.torch
Semi-Supervised Learning
Semi-Supervised Learning with Graphs
- intro: Label Propagation
- paper: http://pages.cs.wisc.edu/~jerryzhu/pub/thesis.pdf
- blog(“标签传播算法(Label Propagation)及Python实现”): http://blog.csdn.net/zouxy09/article/details/49105265
Semi-Supervised Learning with Ladder Networks
- arxiv: http://arxiv.org/abs/1507.02672
- github: https://github.com/CuriousAI/ladder
- github: https://github.com/rinuboney/ladder
Semi-supervised Feature Transfer: The Practical Benefit of Deep Learning Today?
- blog: http://www.kdnuggets.com/2016/07/semi-supervised-feature-transfer-deep-learning.html
Temporal Ensembling for Semi-Supervised Learning
- intro: ICLR 2017
- arxiv: https://arxiv.org/abs/1610.02242
- github: https://github.com/smlaine2/tempens
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
- intro: ICLR 2017 best paper award
- arxiv: https://arxiv.org/abs/1610.05755
- github: https://github.com/tensorflow/models/tree/8505222ea1f26692df05e65e35824c6c71929bb5/privacy
Infinite Variational Autoencoder for Semi-Supervised Learning
- arxiv: https://arxiv.org/abs/1611.07800
Multi-label Learning
CNN: Single-label to Multi-label
- arxiv: http://arxiv.org/abs/1406.5726
Deep Learning for Multi-label Classification
- arxiv: http://arxiv.org/abs/1502.05988
- github: http://meka.sourceforge.net
Predicting Unseen Labels using Label Hierarchies in Large-Scale Multi-label Learning
- intro: ECML 2015
- paper: https://www.kdsl.tu-darmstadt.de/fileadmin/user_upload/Group_KDSL/PUnL_ECML2015_camera_ready.pdf
Learning with a Wasserstein Loss
- project page: http://cbcl.mit.edu/wasserstein/
- arxiv: http://arxiv.org/abs/1506.05439
- code: http://cbcl.mit.edu/wasserstein/yfcc100m_labels.tar.gz
- MIT news: http://news.mit.edu/2015/more-flexible-machine-learning-1001
From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification
- intro: ICML 2016
- arxiv: http://arxiv.org/abs/1602.02068
- github: https://github.com/gokceneraslan/SparseMax.torch
- github: https://github.com/Unbabel/sparsemax
CNN-RNN: A Unified Framework for Multi-label Image Classification
- arxiv: http://arxiv.org/abs/1604.04573
Improving Multi-label Learning with Missing Labels by Structured Semantic Correlations
- arxiv: http://arxiv.org/abs/1608.01441
Extreme Multi-label Loss Functions for Recommendation, Tagging, Ranking & Other Missing Label Applications
- intro: Indian Institute of Technology Delhi & MSR
- paper: https://manikvarma.github.io/pubs/jain16.pdf
Multi-Label Image Classification with Regional Latent Semantic Dependencies
- intro: Regional Latent Semantic Dependencies model (RLSD), RNN, RPN
- arxiv: https://arxiv.org/abs/1612.01082
Privileged Multi-label Learning
- intro: Peking University & University of Technology Sydney & University of Sydney
- arxiv: https://arxiv.org/abs/1701.07194
Multi-task Learning
Multitask Learning / Domain Adaptation
- homepage: http://www.cs.cornell.edu/~kilian/research/multitasklearning/multitasklearning.html
multi-task learning
- discussion: https://github.com/memect/hao/issues/93
Learning and Transferring Multi-task Deep Representation for Face Alignment
- arxiv: http://arxiv.org/abs/1408.3967
Multi-task learning of facial landmarks and expression
- paper: http://www.uoguelph.ca/~gwtaylor/publications/gwtaylor_crv2014.pdf
Multi-Task Deep Visual-Semantic Embedding for Video Thumbnail Selection
- intro: CVPR 2015
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Liu_Multi-Task_Deep_Visual-Semantic_2015_CVPR_paper.pdf
Learning Multiple Tasks with Deep Relationship Networks
- arxiv: https://arxiv.org/abs/1506.02117
Learning deep representation of multityped objects and tasks
- arxiv: http://arxiv.org/abs/1603.01359
Cross-stitch Networks for Multi-task Learning
- arxiv: http://arxiv.org/abs/1604.03539
Multi-Task Learning in Tensorflow (Part 1)
- blog: https://jg8610.github.io/Multi-Task/
Deep Multi-Task Learning with Shared Memory
- intro: EMNLP 2016
- arxiv: http://arxiv.org/abs/1609.07222
Learning to Push by Grasping: Using multiple tasks for effective learning
- arxiv: http://arxiv.org/abs/1609.09025
Identifying beneficial task relations for multi-task learning in deep neural networks
- intro: EACL 2017
- arxiv: https://arxiv.org/abs/1702.08303
- github: https://github.com/jbingel/eacl2017_mtl
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
- intro: University of Cambridge
- arxiv: https://arxiv.org/abs/1705.07115
One Model To Learn Them All
- intro: Google Brain & University of Toronto
- arxiv: https://arxiv.org/abs/1706.05137
- github: https://github.com/tensorflow/tensor2tensor
MultiModel: Multi-Task Machine Learning Across Domains
https://research.googleblog.com/2017/06/multimodel-multi-task-machine-learning.html
An Overview of Multi-Task Learning in Deep Neural Networks
- intro: Aylien Ltd
- arxiv: https://arxiv.org/abs/1706.05098
PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning
- arxiv: https://arxiv.org/abs/1711.05769
- github: https://github.com/arunmallya/packnet
End-to-End Multi-Task Learning with Attention
- intro: Imperial College London
- arxiv: https://arxiv.org/abs/1803.10704
Cross-connected Networks for Multi-task Learning of Detection and Segmentation
https://arxiv.org/abs/1805.05569
Auxiliary Tasks in Multi-task Learning
https://arxiv.org/abs/1805.06334
Multi-modal Learning
Multimodal Deep Learning
- paper: http://ai.stanford.edu/~ang/papers/nipsdlufl10-MultimodalDeepLearning.pdf
Multimodal Convolutional Neural Networks for Matching Image and Sentence
- homepage: http://mcnn.noahlab.com.hk/project.html
- paper: http://mcnn.noahlab.com.hk/ICCV2015.pdf
- arxiv: http://arxiv.org/abs/1504.06063
A C++ library for Multimodal Deep Learning
- arxiv: http://arxiv.org/abs/1512.06927
- github: https://github.com/Jian-23/Deep-Learning-Library
Multimodal Learning for Image Captioning and Visual Question Answering
- slides: http://research.microsoft.com/pubs/264769/UCB_XiaodongHe.6.pdf
Multi modal retrieval and generation with deep distributed models
- slides: http://www.slideshare.net/roelofp/multi-modal-retrieval-and-generation-with-deep-distributed-models
- slides: http://pan.baidu.com/s/1kUSjn4z
Learning Aligned Cross-Modal Representations from Weakly Aligned Data
- homepage: http://projects.csail.mit.edu/cmplaces/index.html
- paper: http://projects.csail.mit.edu/cmplaces/content/paper.pdf
Variational methods for Conditional Multimodal Deep Learning
- arxiv: http://arxiv.org/abs/1603.01801
Training and Evaluating Multimodal Word Embeddings with Large-scale Web Annotated Images
- intro: NIPS 2016. University of California & Pinterest
- project page: http://www.stat.ucla.edu/~junhua.mao/multimodal_embedding.html
- arxiv: https://arxiv.org/abs/1611.08321
Deep Multi-Modal Image Correspondence Learning
- arxiv: https://arxiv.org/abs/1612.01225
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
- slides: http://www.slideshare.net/xavigiro/multimodal-deep-learning-d4l4-deep-learning-for-speech-and-language-upc-2017
Debugging Deep Learning
Some tips for debugging deep learning
- blog: http://www.lab41.org/some-tips-for-debugging-in-deep-learning-2/
Introduction to debugging neural networks
- blog: http://russellsstewart.com/notes/0.html
- reddit: https://www.reddit.com/r/MachineLearning/comments/4du7gv/introduction_to_debugging_neural_networks
How to Visualize, Monitor and Debug Neural Network Learning
- blog: http://deeplearning4j.org/visualization
Learning from learning curves
- intro: Kaggle
- blog: https://medium.com/@dsouza.amanda/learning-from-learning-curves-1a82c6f98f49#.o5synrvvl
Understanding CNN
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
- intro: NIPS 2016
- paper: http://www.cs.toronto.edu/~wenjie/papers/nips16/top.pdf
Deep Learning Networks
PCANet: A Simple Deep Learning Baseline for Image Classification?
- arixv: http://arxiv.org/abs/1404.3606
- code(Matlab): http://mx.nthu.edu.tw/~tsunghan/download/PCANet_demo_pyramid.rar
- mirror: http://pan.baidu.com/s/1mg24b3a
- github(C++): https://github.com/Ldpe2G/PCANet
- github(Python): https://github.com/IshitaTakeshi/PCANet
Convolutional Kernel Networks
- intro: NIPS 2014
- arxiv: http://arxiv.org/abs/1406.3332
Deeply-supervised Nets
- intro: DSN
- arxiv: http://arxiv.org/abs/1409.5185
- homepage: http://vcl.ucsd.edu/~sxie/2014/09/12/dsn-project/
- github: https://github.com/s9xie/DSN
- notes: http://zhangliliang.com/2014/11/02/paper-note-dsn/
FitNets: Hints for Thin Deep Nets
- arxiv: https://arxiv.org/abs/1412.6550
- github: https://github.com/adri-romsor/FitNets
Striving for Simplicity: The All Convolutional Net
- intro: ICLR-2015 workshop
- arxiv: http://arxiv.org/abs/1412.6806
How these researchers tried something unconventional to come out with a smaller yet better Image Recognition.
- intro: All Convolutional Network: (https://arxiv.org/abs/1412.6806#) implementation in Keras
- blog: https://medium.com/@matelabs_ai/how-these-researchers-tried-something-unconventional-to-came-out-with-a-smaller-yet-better-image-544327f30e72#.pfdbvdmuh
- blog: https://github.com/MateLabs/All-Conv-Keras
Pointer Networks
- arxiv: https://arxiv.org/abs/1506.03134
- github: https://github.com/vshallc/PtrNets
- github(TensorFlow): https://github.com/ikostrikov/TensorFlow-Pointer-Networks
- github(TensorFlow): https://github.com/devsisters/pointer-network-tensorflow
- notes: https://github.com/dennybritz/deeplearning-papernotes/blob/master/notes/pointer-networks.md
Pointer Networks in TensorFlow (with sample code)
- blog: https://medium.com/@devnag/pointer-networks-in-tensorflow-with-sample-code-14645063f264#.sxipqfj30
- github: https://github.com/devnag/tensorflow-pointer-networks
Rectified Factor Networks
- arxiv: http://arxiv.org/abs/1502.06464
- github: https://github.com/untom/librfn
Correlational Neural Networks
- arxiv: http://arxiv.org/abs/1504.07225
- github: https://github.com/apsarath/CorrNet
Diversity Networks
- arxiv: http://arxiv.org/abs/1511.05077
Competitive Multi-scale Convolution
- arxiv: http://arxiv.org/abs/1511.05635
- blog: https://zhuanlan.zhihu.com/p/22377389
A Unified Approach for Learning the Parameters of Sum-Product Networks (SPN)
- intro: “The Sum-Product Network (SPN) is a new type of machine learning model with fast exact probabilistic inference over many layers.”
- arxiv: http://arxiv.org/abs/1601.00318
- homepage: http://spn.cs.washington.edu/index.shtml
- code: http://spn.cs.washington.edu/code.shtml
Awesome Sum-Product Networks
- github: https://github.com/arranger1044/awesome-spn
Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation
- intro: CVPR 2016
- arxiv: http://arxiv.org/abs/1511.07356
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Honari_Recombinator_Networks_Learning_CVPR_2016_paper.pdf
- github: https://github.com/SinaHonari/RCN
Dynamic Capacity Networks
- intro: ICML 2016
- arxiv: http://arxiv.org/abs/1511.07838
- github(Tensorflow): https://github.com/beopst/dcn.tf
- review: http://www.erogol.com/1314-2/
Bitwise Neural Networks
- paper: http://paris.cs.illinois.edu/pubs/minje-icmlw2015.pdf
- demo: http://minjekim.com/demo_bnn.html
Learning Discriminative Features via Label Consistent Neural Network
- arxiv: http://arxiv.org/abs/1602.01168
A Theory of Generative ConvNet
- project page: http://www.stat.ucla.edu/~ywu/GenerativeConvNet/main.html
- arxiv: http://arxiv.org/abs/1602.03264
- code: http://www.stat.ucla.edu/~ywu/GenerativeConvNet/doc/code.zip
How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks
- arxiv: http://arxiv.org/abs/1602.02282
Group Equivariant Convolutional Networks (G-CNNs)
- arxiv: http://arxiv.org/abs/1602.07576
Deep Spiking Networks
- arxiv: http://arxiv.org/abs/1602.08323
- github: https://github.com/petered/spiking-mlp
Low-rank passthrough neural networks
- arxiv: http://arxiv.org/abs/1603.03116
- github: https://github.com/Avmb/lowrank-gru
Single Image 3D Interpreter Network
- intro: ECCV 2016 (oral)
- arxiv: https://arxiv.org/abs/1604.08685
Deeply-Fused Nets
- arxiv: http://arxiv.org/abs/1605.07716
SNN: Stacked Neural Networks
- arxiv: http://arxiv.org/abs/1605.08512
Universal Correspondence Network
- intro: NIPS 2016 full oral presentation. Stanford University & NEC Laboratories America
- project page: http://cvgl.stanford.edu/projects/ucn/
- arxiv: https://arxiv.org/abs/1606.03558
Progressive Neural Networks
- intro: Google DeepMind
- arxiv: https://arxiv.org/abs/1606.04671
- github: https://github.com/synpon/prog_nn
- github: https://github.com/yao62995/A3C
Holistic SparseCNN: Forging the Trident of Accuracy, Speed, and Size
- arxiv: http://arxiv.org/abs/1608.01409
Mollifying Networks
- author: Caglar Gulcehre, Marcin Moczulski, Francesco Visin, Yoshua Bengio
- arxiv: http://arxiv.org/abs/1608.04980
Domain Separation Networks
- intro: NIPS 2016. Google Brain & Imperial College London & Google Research
- arxiv: https://arxiv.org/abs/1608.06019
- github: https://github.com/tensorflow/models/tree/master/domain_adaptation
Local Binary Convolutional Neural Networks
- arxiv: http://arxiv.org/abs/1608.06049
CliqueCNN: Deep Unsupervised Exemplar Learning
- intro: NIPS 2016
- arxiv: http://arxiv.org/abs/1608.08792
- github: https://github.com/asanakoy/cliquecnn
Convexified Convolutional Neural Networks
- arxiv: http://arxiv.org/abs/1609.01000
Multi-scale brain networks
- arxiv: http://arxiv.org/abs/1608.08828
https://arxiv.org/abs/1711.11473
Input Convex Neural Networks
- arxiv: http://arxiv.org/abs/1609.07152
- github: https://github.com/locuslab/icnn
HyperNetworks
- arxiv: https://arxiv.org/abs/1609.09106
- blog: http://blog.otoro.net/2016/09/28/hyper-networks/
- github: https://github.com/hardmaru/supercell/blob/master/assets/MNIST_Static_HyperNetwork_Example.ipynb
HyperLSTM
- github: https://github.com/hardmaru/supercell/blob/master/supercell.py
X-CNN: Cross-modal Convolutional Neural Networks for Sparse Datasets
- arxiv: https://arxiv.org/abs/1610.00163
Tensor Switching Networks
- intro: NIPS 2016
- arixiv: https://arxiv.org/abs/1610.10087
- github: https://github.com/coxlab/tsnet
BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks
- intro: Harvard University
- paper: http://www.eecs.harvard.edu/~htk/publication/2016-icpr-teerapittayanon-mcdanel-kung.pdf
- github: https://github.com/kunglab/branchynet
Spectral Convolution Networks
- arxiv: https://arxiv.org/abs/1611.05378
DelugeNets: Deep Networks with Massive and Flexible Cross-layer Information Inflows
- arxiv: https://arxiv.org/abs/1611.05552
- github: https://github.com/xternalz/DelugeNets
PolyNet: A Pursuit of Structural Diversity in Very Deep Networks
- arxiv: https://arxiv.org/abs/1611.05725
- poster: http://mmlab.ie.cuhk.edu.hk/projects/cu_deeplink/polynet_poster.pdf
Weakly Supervised Cascaded Convolutional Networks
- arxiv: https://arxiv.org/abs/1611.08258
DeepSetNet: Predicting Sets with Deep Neural Networks
- intro: multi-class image classification and pedestrian detection
- arxiv: https://arxiv.org/abs/1611.08998
Steerable CNNs
- intro: University of Amsterdam
- arxiv: https://arxiv.org/abs/1612.08498
Feedback Networks
- project page: http://feedbacknet.stanford.edu/
- arxiv: https://arxiv.org/abs/1612.09508
- youtube: https://youtu.be/MY5Uhv38Ttg
Oriented Response Networks
- arxiv: https://arxiv.org/abs/1701.01833
OptNet: Differentiable Optimization as a Layer in Neural Networks
- arxiv: https://arxiv.org/abs/1703.00443
- github: https://github.com/locuslab/optnet
A fast and differentiable QP solver for PyTorch
- github: https://github.com/locuslab/qpth
Meta Networks
https://arxiv.org/abs/1703.00837
Deformable Convolutional Networks
- intro: ICCV 2017 oral. Microsoft Research Asia
- keywords: deformable convolution, deformable RoI pooling
- arxiv: https://arxiv.org/abs/1703.06211
- sliedes: http://www.jifengdai.org/slides/Deformable_Convolutional_Networks_Oral.pdf
- github(official): https://github.com/msracver/Deformable-ConvNets
- github: https://github.com/felixlaumon/deform-conv
- github: https://github.com/oeway/pytorch-deform-conv
Second-order Convolutional Neural Networks
https://arxiv.org/abs/1703.06817
Gabor Convolutional Networks
https://arxiv.org/abs/1705.01450
Deep Rotation Equivariant Network
https://arxiv.org/abs/1705.08623
Dense Transformer Networks
- intro: Washington State University & University of California, Davis
- arxiv: https://arxiv.org/abs/1705.08881
- github: https://github.com/divelab/dtn
Deep Complex Networks
- intro: [Université de Montréal & INRS-EMT & Microsoft Maluuba
- arxiv: https://arxiv.org/abs/1705.09792
- github: https://github.com/ChihebTrabelsi/deep_complex_networks
Deep Quaternion Networks
- intro: University of Louisiana
- arxiv: https://arxiv.org/abs/1712.04604
DiracNets: Training Very Deep Neural Networks Without Skip-Connections
- intro: Université Paris-Est
- arxiv: https://arxiv.org/abs/1706.00388
- github: https://github.com/szagoruyko/diracnets
Dual Path Networks
- intro: National University of Singapore
- arxiv: https://arxiv.org/abs/1707.01629
- github(MXNet): https://github.com/cypw/DPNs
Primal-Dual Group Convolutions for Deep Neural Networks
Interleaved Group Convolutions for Deep Neural Networks
- intro: ICCV 2017
- keywords: interleaved group convolutional neural networks (IGCNets), IGCV1
- arxiv: https://arxiv.org/abs/1707.02725
- gihtub: https://github.com/hellozting/InterleavedGroupConvolutions
IGCV2: Interleaved Structured Sparse Convolutional Neural Networks
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1804.06202
IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks
- intro: University of Scinence and Technology of China & Microsoft Reserach Asia
- arxiv: https://arxiv.org/abs/1806.00178
- github(official): https://github.com/homles11/IGCV3
Sensor Transformation Attention Networks
https://arxiv.org/abs/1708.01015
Sparsity Invariant CNNs
https://arxiv.org/abs/1708.06500
SPARCNN: SPAtially Related Convolutional Neural Networks
https://arxiv.org/abs/1708.07522
BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks
https://arxiv.org/abs/1709.01686
Polar Transformer Networks
https://arxiv.org/abs/1709.01889
Tensor Product Generation Networks
https://arxiv.org/abs/1709.09118
Deep Competitive Pathway Networks
- intro: ACML 2017
- arxiv: https://arxiv.org/abs/1709.10282
- github: https://github.com/JiaRenChang/CoPaNet
Context Embedding Networks
https://arxiv.org/abs/1710.01691
Generalization in Deep Learning
- intro: MIT & University of Montreal
- arxiv: https://arxiv.org/abs/1710.05468
Understanding Deep Learning Generalization by Maximum Entropy
- intro: University of Science and Technology of China & Beijing Jiaotong University & Chinese Academy of Sciences
- arxiv: https://arxiv.org/abs/1711.07758
Do Convolutional Neural Networks Learn Class Hierarchy?
- intro: Bosch Research North America & Michigan State University
- arxiv: https://arxiv.org/abs/1710.06501
- video demo: https://vimeo.com/228263798
Deep Hyperspherical Learning
- intro: NIPS 2017
- arxiv: https://arxiv.org/abs/1711.03189
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
- intro: AAAI 2018
- arxiv: https://arxiv.org/abs/1711.06178
Neural Motifs: Scene Graph Parsing with Global Context
- keywords: Stacked Motif Networks
- arxiv: https://arxiv.org/abs/1711.06640
Priming Neural Networks
https://arxiv.org/abs/1711.05918
Three Factors Influencing Minima in SGD
https://arxiv.org/abs/1711.04623
BPGrad: Towards Global Optimality in Deep Learning via Branch and Pruning
https://arxiv.org/abs/1711.06959
BlockDrop: Dynamic Inference Paths in Residual Networks
- intro: UMD & UT Austin & IBM Research & Fusemachines Inc.
- arxiv: https://arxiv.org/abs/1711.08393
Wasserstein Introspective Neural Networks
https://arxiv.org/abs/1711.08875
SkipNet: Learning Dynamic Routing in Convolutional Networks
https://arxiv.org/abs/1711.09485
Do Convolutional Neural Networks act as Compositional Nearest Neighbors?
- intro: CMU & West Virginia University
- arxiv: https://arxiv.org/abs/1711.10683
ConvNets and ImageNet Beyond Accuracy: Explanations, Bias Detection, Adversarial Examples and Model Criticism
- intro: Facebook AI Research
- arxiv: https://arxiv.org/abs/1711.11443
Broadcasting Convolutional Network
https://arxiv.org/abs/1712.02517
Point-wise Convolutional Neural Network
- intro: Singapore University of Technology and Design
- arxiv: https://arxiv.org/abs/1712.05245
ScreenerNet: Learning Curriculum for Neural Networks
- intro: Intel Corporation & Allen Institute for Artificial Intelligence
- keywords: curricular learning, deep learning, deep q-learning
- arxiv: https://arxiv.org/abs/1801.00904
Sparsely Connected Convolutional Networks
https://arxiv.org/abs/1801.05895
Spherical CNNs
- intro: ICLR 2018 best paper award. University of Amsterdam & EPFL
- arxiv: https://arxiv.org/abs/1801.10130
- github(official, PyTorch): https://github.com/jonas-koehler/s2cnn
Going Deeper in Spiking Neural Networks: VGG and Residual Architectures
- intro: Purdue University & Oculus Research & Facebook Research
- arxiv: https://arxiv.org/abs/1802.02627
Rotate your Networks: Better Weight Consolidation and Less Catastrophic Forgetting
https://arxiv.org/abs/1802.02950
Convolutional Neural Networks with Alternately Updated Clique
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1802.10419
- github: https://github.com/iboing/CliqueNet
Decoupled Networks
- intro: CVPR 2018 (Spotlight)
- arxiv: https://arxiv.org/abs/1804.08071
Optical Neural Networks
https://arxiv.org/abs/1805.06082
Regularization Learning Networks
- intro: Weizmann Institute of Science
- keywords: Regularization Learning Networks (RLNs), Counterfactual Loss, tabular datasets
- arxiv: https://arxiv.org/abs/1805.06440
Bilinear Attention Networks
https://arxiv.org/abs/1805.07932
Cautious Deep Learning
https://arxiv.org/abs/1805.09460
Perturbative Neural Networks
- intro: CVPR 2018
- intro: We introduce a very simple, yet effective, module called a perturbation layer as an alternative to a convolutional layer
- project page: http://xujuefei.com/pnn.html
- arxiv: https://arxiv.org/abs/1806.01817
Lightweight Probabilistic Deep Networks
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1805.11327
Channel Gating Neural Networks
https://arxiv.org/abs/1805.12549
Evenly Cascaded Convolutional Networks
https://arxiv.org/abs/1807.00456
SGAD: Soft-Guided Adaptively-Dropped Neural Network
https://arxiv.org/abs/1807.01430
Explainable Neural Computation via Stack Neural Module Networks
- intro: ECCV 2018
- arxiv: https://arxiv.org/abs/1807.08556
Rank-1 Convolutional Neural Network
https://arxiv.org/abs/1808.04303
Neural Network Encapsulation
- intro: ECCV 2018
- arxiv: https://arxiv.org/abs/1808.03749
Convolutions / Filters
Warped Convolutions: Efficient Invariance to Spatial Transformations
- arxiv: http://arxiv.org/abs/1609.04382
Coordinating Filters for Faster Deep Neural Networks
- arxiv: https://arxiv.org/abs/1703.09746
- github: https://github.com/wenwei202/caffe/tree/sfm
Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions
- intro: UC Berkeley
- arxiv: https://arxiv.org/abs/1711.08141
Spatially-Adaptive Filter Units for Deep Neural Networks
- intro: University of Ljubljana & University of Birmingham
- arxiv: https://arxiv.org/abs/1711.11473
clcNet: Improving the Efficiency of Convolutional Neural Network using Channel Local Convolutions
https://arxiv.org/abs/1712.06145
DCFNet: Deep Neural Network with Decomposed Convolutional Filters
https://arxiv.org/abs/1802.04145
Fast End-to-End Trainable Guided Filter
- intro: CVPR 2018
- project page: http://wuhuikai.me/DeepGuidedFilterProject/
- gtihub(official, PyTorch): https://github.com/wuhuikai/DeepGuidedFilter
Diagonalwise Refactorization: An Efficient Training Method for Depthwise Convolutions
- arxiv: https://arxiv.org/abs/1803.09926
- github: https://github.com/clavichord93/diagonalwise-refactorization-tensorflow
Use of symmetric kernels for convolutional neural networks
- intro: ICDSIAI 2018
- arxiv: https://arxiv.org/abs/1805.09421
EasyConvPooling: Random Pooling with Easy Convolution for Accelerating Training and Testing
https://arxiv.org/abs/1806.01729
Targeted Kernel Networks: Faster Convolutions with Attentive Regularization
https://arxiv.org/abs/1806.00523
An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution
- intro: 1Uber AI Labs & Uber Technologies
- arxiv: https://arxiv.org/abs/1807.03247
- github: https://github.com/mkocabas/CoordConv-pytorch
- youtube: https://www.youtube.com/watch?v=8yFQc6elePA
Network Decoupling: From Regular to Depthwise Separable Convolutions
https://arxiv.org/abs/1808.05517
Highway Networks
Highway Networks
- intro: ICML 2015 Deep Learning workshop
- intro: shortcut connections with gating functions. These gates are data-dependent and have parameters
- arxiv: http://arxiv.org/abs/1505.00387
- github(PyTorch): https://github.com/analvikingur/pytorch_Highway
Highway Networks with TensorFlow
- blog: https://medium.com/jim-fleming/highway-networks-with-tensorflow-1e6dfa667daa#.71fgztsb6
Very Deep Learning with Highway Networks
- homepage(papers+code+FAQ): http://people.idsia.ch/~rupesh/very_deep_learning/
Training Very Deep Networks
- intro: Extends Highway Networks
- project page: http://people.idsia.ch/~rupesh/very_deep_learning/
- arxiv: http://arxiv.org/abs/1507.06228
Spatial Transformer Networks
- intro: NIPS 2015
- arxiv: http://arxiv.org/abs/1506.02025
- gitxiv: http://gitxiv.com/posts/5WTXTLuEA4Hd8W84G/spatial-transformer-networks
- github: https://github.com/daerduoCarey/SpatialTransformerLayer
- github: https://github.com/qassemoquab/stnbhwd
- github: https://github.com/skaae/transformer_network
- github(Caffe): https://github.com/happynear/SpatialTransformerLayer
- github: https://github.com/daviddao/spatial-transformer-tensorflow
- caffe-issue: https://github.com/BVLC/caffe/issues/3114
- code: https://lasagne.readthedocs.org/en/latest/modules/layers/special.html#lasagne.layers.TransformerLayer
- ipn(Lasagne): http://nbviewer.jupyter.org/github/Lasagne/Recipes/blob/master/examples/spatial_transformer_network.ipynb
- notes: https://www.evernote.com/shard/s189/sh/ad8a38de-9e98-4e06-b09e-574bd62893ff/32f72798c095dd7672f4cb017a32d9b4
- youtube: https://www.youtube.com/watch?v=6NOQC_fl1hQ
The power of Spatial Transformer Networks
- blog: http://torch.ch/blog/2015/09/07/spatial_transformers.html
- github: https://github.com/moodstocks/gtsrb.torch
Recurrent Spatial Transformer Networks
- paper: http://arxiv.org/abs/1509.05329
Deep Learning Paper Implementations: Spatial Transformer Networks - Part I
- blog: https://kevinzakka.github.io/2017/01/10/stn-part1/
- github: https://github.com/kevinzakka/blog-code/tree/master/spatial_transformer
Top-down Flow Transformer Networks
https://arxiv.org/abs/1712.02400
Non-Parametric Transformation Networks
- intro: CMU
- arxiv: https://arxiv.org/abs/1801.04520
Hierarchical Spatial Transformer Network
https://arxiv.org/abs/1801.09467
Spatial Transformer Introspective Neural Network
- intro: Johns Hopkins University & Shanghai University
- arxiv: https://arxiv.org/abs/1805.06447
DeSTNet: Densely Fused Spatial Transformer Networks
- intro: BMVC 2018
- arxiv: https://arxiv.org/abs/1807.04050
FractalNet
FractalNet: Ultra-Deep Neural Networks without Residuals
- project: http://people.cs.uchicago.edu/~larsson/fractalnet/
- arxiv: http://arxiv.org/abs/1605.07648
- github: https://github.com/gustavla/fractalnet
- github: https://github.com/edgelord/FractalNet
- github(Keras): https://github.com/snf/keras-fractalnet
Architecture Search for Convolutional Neural Networks
Neural Architecture Search with Reinforcement Learning
- intro: Google Brain
- paper: https://openreview.net/pdf?id=r1Ue8Hcxg
Neural Optimizer Search with Reinforcement Learning
- intro: ICML 2017
- arxiv: https://arxiv.org/abs/1709.07417
Learning Transferable Architectures for Scalable Image Recognition
- intro: Google Brain
- keywordss: Neural Architecture Search Network (NASNet), AutoML
- arxiv: https://arxiv.org/abs/1707.07012
- gtihub: https://github.com//titu1994/Keras-NASNet
- blog: https://research.googleblog.com/2017/11/automl-for-large-scale-image.html
- github: https://github.com/titu1994/neural-architecture-search
The First Step-by-Step Guide for Implementing Neural Architecture Search with Reinforcement Learning Using TensorFlow
- blog: https://lab.wallarm.com/the-first-step-by-step-guide-for-implementing-neural-architecture-search-with-reinforcement-99ade71b3d28
- github: https://github.com/wallarm/nascell-automl
Practical Network Blocks Design with Q-Learning
https://arxiv.org/abs/1708.05552
Simple And Efficient Architecture Search for Convolutional Neural Networks
- intro: Bosch Center for Artificial Intelligence & University of Freiburg
- arxiv: https://arxiv.org/abs/1711.04528
Progressive Neural Architecture Search
- intri: Johns Hopkins University & Google Brain & Google Cloud & Stanford University & Google AI
- arxiv: https://arxiv.org/abs/1712.00559
Finding Competitive Network Architectures Within a Day Using UCT
- intro: IBM Research AI – Ireland
- arxiv: https://arxiv.org/abs/1712.07420
Regularized Evolution for Image Classifier Architecture Search
https://arxiv.org/abs/1802.01548
Efficient Neural Architecture Search via Parameters Sharing
- intro: Google Brain & CMU & Stanford University
- arxiv: https://arxiv.org/abs/1802.03268
- github: https://github.com/carpedm20/ENAS-pytorch
- github: https://github.com/melodyguan/enas
Neural Architecture Search with Bayesian Optimisation and Optimal Transport
- intro: CMU
- arxiv: https://arxiv.org/abs/1802.07191
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
- intro: Brown University & Northeastern University
- arxiv: https://arxiv.org/abs/1805.07440
DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures
- intro: National Tsing-Hua University & Google https://arxiv.org/abs/1806.08198
DARTS: Differentiable Architecture Search
- intro: Google & CMU
- arxiv: https://arxiv.org/abs/1806.09055
- gtihub: https://github.com/quark0/darts
Towards Automated Deep Learning: Efficient Joint Neural Architecture and Hyperparameter Search
- intro: ICML 2018 AutoML Workshop. University of Freiburg
- arxiv: https://arxiv.org/abs/1807.06906
Efficient Progressive Neural Architecture Search
- intro: BMVC 2018
- arxiv: https://arxiv.org/abs/1808.00391
Reinforced Evolutionary Neural Architecture Search
https://arxiv.org/abs/1808.00193
Teacher Guided Architecture Search
https://arxiv.org/abs/1808.01405
BlockQNN: Efficient Block-wise Neural Network Architecture Generation
https://arxiv.org/abs/1808.05584
Neural Architecture Search: A Survey
- intro: Bosch Center for Artificial Intelligence & University of Freiburg
- arxiv: https://arxiv.org/abs/1808.05377
Searching for Efficient Multi-Scale Architectures for Dense Image Prediction
- intro: NIPS 2018. Google Inc.
- arxiv: https://arxiv.org/abs/1809.04184
Graph Convolutional Networks
Learning Convolutional Neural Networks for Graphs
- intro: ICML 2016
- arxiv: http://arxiv.org/abs/1605.05273
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
- arxiv: https://arxiv.org/abs/1606.09375
- github: https://github.com/mdeff/cnn_graph
- github: https://github.com/pfnet-research/chainer-graph-cnn
Semi-Supervised Classification with Graph Convolutional Networks
- arxiv: http://arxiv.org/abs/1609.02907
- github: https://github.com/tkipf/gcn
- blog: http://tkipf.github.io/graph-convolutional-networks/
Graph Based Convolutional Neural Network
- intro: BMVC 2016
- arxiv: http://arxiv.org/abs/1609.08965
How powerful are Graph Convolutions? (review of Kipf & Welling, 2016)
http://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-2016-2/
Graph Convolutional Networks
- blog: http://tkipf.github.io/graph-convolutional-networks/
DeepGraph: Graph Structure Predicts Network Growth
- arxiv: https://arxiv.org/abs/1610.06251
Deep Learning with Sets and Point Clouds
- intro: CMU
- arxiv: https://arxiv.org/abs/1611.04500
Deep Learning on Graphs
- lecture: https://figshare.com/articles/Deep_Learning_on_Graphs/4491686
Robust Spatial Filtering with Graph Convolutional Neural Networks
https://arxiv.org/abs/1703.00792
Modeling Relational Data with Graph Convolutional Networks
https://arxiv.org/abs/1703.06103
Distance Metric Learning using Graph Convolutional Networks: Application to Functional Brain Networks
- intro: Imperial College London
- arxiv: https://arxiv.org/abs/1703.02161
Deep Learning on Graphs with Graph Convolutional Networks
- slides: http://tkipf.github.io/misc/GCNSlides.pdf
Deep Learning on Graphs with Keras
- intro:; Keras implementation of Graph Convolutional Networks
- github: https://github.com/tkipf/keras-gcn
Learning Graph While Training: An Evolving Graph Convolutional Neural Network
https://arxiv.org/abs/1708.04675
Graph Attention Networks
- intro: ICLR 2018
- intro: University of Cambridge & Centre de Visio per Computador, UAB & Montreal Institute for Learning Algorithms
- project page: http://petar-v.com/GAT/
- arxiv: https://arxiv.org/abs/1710.10903
- github: https://github.com/PetarV-/GAT
Residual Gated Graph ConvNets
https://arxiv.org/abs/1711.07553
Probabilistic and Regularized Graph Convolutional Networks
- intro: CMU
- arxiv: https://arxiv.org/abs/1803.04489
Videos as Space-Time Region Graphs
https://arxiv.org/abs/1806.01810
Relational inductive biases, deep learning, and graph networks
- intro: DeepMind & Google Brain & MIT & University of Edinburgh
- arxiv: https://arxiv.org/abs/1806.01261
Generative Models
Max-margin Deep Generative Models
- intro: NIPS 2015
- arxiv: http://arxiv.org/abs/1504.06787
- github: https://github.com/zhenxuan00/mmdgm
Discriminative Regularization for Generative Models
- arxiv: http://arxiv.org/abs/1602.03220
- github: https://github.com/vdumoulin/discgen
Auxiliary Deep Generative Models
- arxiv: http://arxiv.org/abs/1602.05473
- github: https://github.com/larsmaaloee/auxiliary-deep-generative-models
Sampling Generative Networks: Notes on a Few Effective Techniques
- arxiv: http://arxiv.org/abs/1609.04468
- paper: https://github.com/dribnet/plat
Conditional Image Synthesis With Auxiliary Classifier GANs
- arxiv: https://arxiv.org/abs/1610.09585
- github: https://github.com/buriburisuri/ac-gan
- github(Keras): https://github.com/lukedeo/keras-acgan
On the Quantitative Analysis of Decoder-Based Generative Models
- intro: University of Toronto & OpenAI & CMU
- arxiv: https://arxiv.org/abs/1611.04273
- github: https://github.com/tonywu95/eval_gen
Boosted Generative Models
- arxiv: https://arxiv.org/abs/1702.08484
- paper: https://openreview.net/pdf?id=HyY4Owjll
An Architecture for Deep, Hierarchical Generative Models
- intro: NIPS 2016
- arxiv: https://arxiv.org/abs/1612.04739
- github: https://github.com/Philip-Bachman/MatNets-NIPS
Deep Learning and Hierarchal Generative Models
- intro: NIPS 2016. MIT
- arxiv: https://arxiv.org/abs/1612.09057
Probabilistic Torch
- intro: Probabilistic Torch is library for deep generative models that extends PyTorch
- github: https://github.com/probtorch/probtorch
Tutorial on Deep Generative Models
- intro: UAI 2017 Tutorial: Shakir Mohamed & Danilo Rezende (DeepMind)
- youtube: https://www.youtube.com/watch?v=JrO5fSskISY
- mirror: https://www.bilibili.com/video/av16428277/
- slides: http://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
A Note on the Inception Score
- intro: Stanford University
- arxiv: https://arxiv.org/abs/1801.01973
Gradient Layer: Enhancing the Convergence of Adversarial Training for Generative Models
- intro: AISTATS 2018. The University of Tokyo
- arxiv: https://arxiv.org/abs/1801.02227
Batch Normalization in the final layer of generative networks
https://arxiv.org/abs/1805.07389
Deep Structured Generative Models
- intro: Tsinghua University
- arxiv: https://arxiv.org/abs/1807.03877
VFunc: a Deep Generative Model for Functions
- intro: ICML 2018 workshop on Prediction and Generative Modeling in Reinforcement Learning. Microsoft Research & McGill University
- arxiv: https://arxiv.org/abs/1807.04106
Deep Learning and Robots
Robot Learning Manipulation Action Plans by “Watching” Unconstrained Videos from the World Wide Web
- intro: AAAI 2015
- paper: http://www.umiacs.umd.edu/~yzyang/paper/YouCookMani_CameraReady.pdf
- author page: http://www.umiacs.umd.edu/~yzyang/
End-to-End Training of Deep Visuomotor Policies
- arxiv: http://arxiv.org/abs/1504.00702
Comment on Open AI’s Efforts to Robot Learning
- blog: https://gridworld.wordpress.com/2016/07/28/comment-on-open-ais-efforts-to-robot-learning/
The Curious Robot: Learning Visual Representations via Physical Interactions
- arxiv: http://arxiv.org/abs/1604.01360
How to build a robot that “sees” with $100 and TensorFlow
- blog: https://www.oreilly.com/learning/how-to-build-a-robot-that-sees-with-100-and-tensorflow
Deep Visual Foresight for Planning Robot Motion
- project page: https://sites.google.com/site/brainrobotdata/
- arxiv: https://arxiv.org/abs/1610.00696
- video: https://sites.google.com/site/robotforesight/
Sim-to-Real Robot Learning from Pixels with Progressive Nets
- intro: Google DeepMind
- arxiv: https://arxiv.org/abs/1610.04286
Towards Lifelong Self-Supervision: A Deep Learning Direction for Robotics
- arxiv: https://arxiv.org/abs/1611.00201
A Differentiable Physics Engine for Deep Learning in Robotics
- paper: http://openreview.net/pdf?id=SyEiHNKxx
Deep-learning in Mobile Robotics - from Perception to Control Systems: A Survey on Why and Why not
- intro: City University of Hong Kong & Hong Kong University of Science and Technology
- arxiv: https://arxiv.org/abs/1612.07139
Deep Robotic Learning
- intro: https://simons.berkeley.edu/talks/sergey-levine-01-24-2017-1
- youtube: https://www.youtube.com/watch?v=jtjW5Pye_44
Deep Learning in Robotics: A Review of Recent Research
https://arxiv.org/abs/1707.07217
Deep Learning for Robotics
- intro: by Pieter Abbeel
- video: https://www.facebook.com/nipsfoundation/videos/1554594181298482/
- mirror: https://www.bilibili.com/video/av17078186/
- slides: https://www.dropbox.com/s/4fhczb9cxkuqalf/2017_11_xx_BARS-Abbeel.pdf?dl=0
DroNet: Learning to Fly by Driving
- project page: http://rpg.ifi.uzh.ch/dronet.html
- paper: http://rpg.ifi.uzh.ch/docs/RAL18_Loquercio.pdf
- github: https://github.com/uzh-rpg/rpg_public_dronet
A Survey on Deep Learning Methods for Robot Vision
https://arxiv.org/abs/1803.10862
Deep Learning on Mobile / Embedded Devices
Convolutional neural networks on the iPhone with VGGNet
- blog: http://matthijshollemans.com/2016/08/30/vggnet-convolutional-neural-network-iphone/
- github: https://github.com/hollance/VGGNet-Metal
TensorFlow for Mobile Poets
- blog: https://petewarden.com/2016/09/27/tensorflow-for-mobile-poets/
The Convolutional Neural Network(CNN) for Android
- intro: CnnForAndroid:A Classification Project using Convolutional Neural Network(CNN) in Android platform。It also support Caffe Model
- github: https://github.com/zhangqianhui/CnnForAndroid
TensorFlow on Android
- blog: https://www.oreilly.com/learning/tensorflow-on-android
Experimenting with TensorFlow on Android
- part 1: https://medium.com/@mgazar/experimenting-with-tensorflow-on-android-pt-1-362683b31838#.5gbp2d4st
- part 2: https://medium.com/@mgazar/experimenting-with-tensorflow-on-android-part-2-12f3dc294eaf#.2gx3o65f5
- github: https://github.com/MostafaGazar/tensorflow
XNOR.ai frees AI from the prison of the supercomputer
- blog: https://techcrunch.com/2017/01/19/xnor-ai-frees-ai-from-the-prison-of-the-supercomputer/
Embedded Deep Learning with NVIDIA Jetson
- youtube: https://www.youtube.com/watch?v=_4tzlXPQWb8
- mirror: https://pan.baidu.com/s/1pKCDXkZ
Embedded and mobile deep learning research resources
https://github.com/csarron/emdl
Modeling the Resource Requirements of Convolutional Neural Networks on Mobile Devices
https://arxiv.org/abs/1709.09118
Benchmarks
Deep Learning’s Accuracy
- blog: http://deeplearning4j.org/accuracy.html
Benchmarks for popular CNN models
- intro: Benchmarks for popular convolutional neural network models on CPU and different GPUs, with and without cuDNN.
- github: https://github.com/jcjohnson/cnn-benchmarks
Deep Learning Benchmarks
http://add-for.com/deep-learning-benchmarks/
cudnn-rnn-benchmarks
- github: https://github.com/MaximumEntropy/cudnn_rnn_theano_benchmarks
Papers
Reweighted Wake-Sleep
- paper: http://arxiv.org/abs/1406.2751
- github: https://github.com/jbornschein/reweighted-ws
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
- paper: http://arxiv.org/abs/1502.05336
- github: https://github.com/HIPS/Probabilistic-Backpropagation
Deeply-Supervised Nets
- paper: http://arxiv.org/abs/1409.5185
- github: https://github.com/mbhenaff/spectral-lib
Deep learning
- intro: Nature 2015
- author: Yann LeCun, Yoshua Bengio & Geoffrey Hinton
- paper: http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf
On the Expressive Power of Deep Learning: A Tensor Analysis
- paper: http://arxiv.org/abs/1509.05009
Understanding and Predicting Image Memorability at a Large Scale
- intro: MIT. ICCV 2015
- homepage: http://memorability.csail.mit.edu/
- paper: https://people.csail.mit.edu/khosla/papers/iccv2015_khosla.pdf
- code: http://memorability.csail.mit.edu/download.html
- reviews: http://petapixel.com/2015/12/18/how-memorable-are-times-top-10-photos-of-2015-to-a-computer/
Towards Open Set Deep Networks
- arxiv: http://arxiv.org/abs/1511.06233
- github: https://github.com/abhijitbendale/OSDN
Structured Prediction Energy Networks
- intro: ICML 2016. SPEN
- arxiv: http://arxiv.org/abs/1511.06350
- github: https://github.com/davidBelanger/SPEN
Deep Neural Networks predict Hierarchical Spatio-temporal Cortical Dynamics of Human Visual Object Recognition
- arxiv: http://arxiv.org/abs/1601.02970
- demo: http://brainmodels.csail.mit.edu/dnn/drawCNN/
Recent Advances in Convolutional Neural Networks
- arxiv: http://arxiv.org/abs/1512.07108
Understanding Deep Convolutional Networks
- arxiv: http://arxiv.org/abs/1601.04920
DeepCare: A Deep Dynamic Memory Model for Predictive Medicine
- arxiv: http://arxiv.org/abs/1602.00357
Exploiting Cyclic Symmetry in Convolutional Neural Networks
- intro: ICML 2016
- arxiv: http://arxiv.org/abs/1602.02660
- github(Winning solution for the National Data Science Bowl competition on Kaggle (plankton classification)): https://github.com/benanne/kaggle-ndsb
- ref(use Cyclic pooling): http://benanne.github.io/2015/03/17/plankton.html
Cross-dimensional Weighting for Aggregated Deep Convolutional Features
- arxiv: http://arxiv.org/abs/1512.04065
- github: https://github.com/yahoo/crow
Understanding Visual Concepts with Continuation Learning
- project page: http://willwhitney.github.io/understanding-visual-concepts/
- arxiv: http://arxiv.org/abs/1602.06822
- github: https://github.com/willwhitney/understanding-visual-concepts
Learning Efficient Algorithms with Hierarchical Attentive Memory
- arxiv: http://arxiv.org/abs/1602.03218
- github: https://github.com/Smerity/tf-ham
DrMAD: Distilling Reverse-Mode Automatic Differentiation for Optimizing Hyperparameters of Deep Neural Networks
- arxiv: http://arxiv.org/abs/1601.00917
- github: https://github.com/bigaidream-projects/drmad
Do Deep Convolutional Nets Really Need to be Deep (Or Even Convolutional)?
- arxiv: http://arxiv.org/abs/1603.05691
- review: http://www.erogol.com/paper-review-deep-convolutional-nets-really-need-deep-even-convolutional/
Harnessing Deep Neural Networks with Logic Rules
- arxiv: http://arxiv.org/abs/1603.06318
Degrees of Freedom in Deep Neural Networks
- arxiv: http://arxiv.org/abs/1603.09260
Deep Networks with Stochastic Depth
- arxiv: http://arxiv.org/abs/1603.09382
- github: https://github.com/yueatsprograms/Stochastic_Depth
- notes(“Stochastic Depth Networks will Become the New Normal”): http://deliprao.com/archives/134
- github: https://github.com/dblN/stochastic_depth_keras
- github: https://github.com/yasunorikudo/chainer-ResDrop
- review: https://medium.com/@tim_nth/review-deep-networks-with-stochastic-depth-51bd53acfe72
LIFT: Learned Invariant Feature Transform
- intro: ECCV 2016
- arxiv: http://arxiv.org/abs/1603.09114
- github(official): https://github.com/cvlab-epfl/LIFT
Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex
- arxiv: https://arxiv.org/abs/1604.03640
- slides: http://prlab.tudelft.nl/sites/default/files/rnnResnetCortex.pdf
Understanding How Image Quality Affects Deep Neural Networks
- arxiv: http://arxiv.org/abs/1604.04004
- reddit: https://www.reddit.com/r/MachineLearning/comments/4exk3u/dcnns_are_more_sensitive_to_blur_and_noise_than/
Deep Embedding for Spatial Role Labeling
- arxiv: http://arxiv.org/abs/1603.08474
- github: https://github.com/oswaldoludwig/visually-informed-embedding-of-word-VIEW-
Unreasonable Effectiveness of Learning Neural Nets: Accessible States and Robust Ensembles
- arxiv: http://arxiv.org/abs/1605.06444
Learning Deep Representation for Imbalanced Classification
- intro: CVPR 2016
- keywords: Deep Learning Large Margin Local Embedding (LMLE)
- project page: http://mmlab.ie.cuhk.edu.hk/projects/LMLE.html
- paper: http://personal.ie.cuhk.edu.hk/~ccloy/files/cvpr_2016_imbalanced.pdf
- code: http://mmlab.ie.cuhk.edu.hk/projects/LMLE/lmle_code.zip
Newtonian Image Understanding: Unfolding the Dynamics of Objects in Static Images
- homepage: http://allenai.org/plato/newtonian-understanding/
- arxiv: http://arxiv.org/abs/1511.04048
- github: https://github.com/roozbehm/newtonian
DeepMath - Deep Sequence Models for Premise Selection
- arxiv: https://arxiv.org/abs/1606.04442
- github: https://github.com/tensorflow/deepmath
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
- arxiv: http://arxiv.org/abs/1607.08194
Systematic evaluation of CNN advances on the ImageNet
- arxiv: http://arxiv.org/abs/1606.02228
- github: https://github.com/ducha-aiki/caffenet-benchmark
Why does deep and cheap learning work so well?
- intro: Harvard and MIT
- arxiv: http://arxiv.org/abs/1608.08225
- review: https://www.technologyreview.com/s/602344/the-extraordinary-link-between-deep-neural-networks-and-the-nature-of-the-universe/
A scalable convolutional neural network for task-specified scenarios via knowledge distillation
- arxiv: http://arxiv.org/abs/1609.05695
Alternating Back-Propagation for Generator Network
- project page(code+data): http://www.stat.ucla.edu/~ywu/ABP/main.html
- paper: http://www.stat.ucla.edu/~ywu/ABP/doc/arXivABP.pdf
A Novel Representation of Neural Networks
- arxiv: https://arxiv.org/abs/1610.01549
Optimization of Convolutional Neural Network using Microcanonical Annealing Algorithm
- intro: IEEE ICACSIS 2016
- arxiv: https://arxiv.org/abs/1610.02306
Uncertainty in Deep Learning
- intro: PhD Thesis. Cambridge Machine Learning Group
- blog: http://mlg.eng.cam.ac.uk/yarin/blog_2248.html
- thesis: http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf
Deep Convolutional Neural Network Design Patterns
- arxiv: https://arxiv.org/abs/1611.00847
- github: https://github.com/iPhysicist/CNNDesignPatterns
Extensions and Limitations of the Neural GPU
- arxiv: https://arxiv.org/abs/1611.00736
- github: https://github.com/openai/ecprice-neural-gpu
Neural Functional Programming
- arxiv: https://arxiv.org/abs/1611.01988
Deep Information Propagation
- arxiv: https://arxiv.org/abs/1611.01232
Compressed Learning: A Deep Neural Network Approach
- arxiv: https://arxiv.org/abs/1610.09615
A backward pass through a CNN using a generative model of its activations
- arxiv: https://arxiv.org/abs/1611.02767
Understanding deep learning requires rethinking generalization
- intro: ICLR 2017 best paper. MIT & Google Brain & UC Berkeley & Google DeepMind
- arxiv: https://arxiv.org/abs/1611.03530
- example code: https://github.com/pluskid/fitting-random-labels
- notes: https://theneuralperspective.com/2017/01/24/understanding-deep-learning-requires-rethinking-generalization/
Learning the Number of Neurons in Deep Networks
- intro: NIPS 2016
- arxiv: https://arxiv.org/abs/1611.06321
Survey of Expressivity in Deep Neural Networks
- intro: Presented at NIPS 2016 Workshop on Interpretable Machine Learning in Complex Systems
- intro: Google Brain & Cornell University & Stanford University
- arxiv: https://arxiv.org/abs/1611.08083
Designing Neural Network Architectures using Reinforcement Learning
- intro: MIT
- project page: https://bowenbaker.github.io/metaqnn/
- arxiv: https://arxiv.org/abs/1611.02167
Towards Robust Deep Neural Networks with BANG
- intro: University of Colorado
- arxiv: https://arxiv.org/abs/1612.00138
Deep Quantization: Encoding Convolutional Activations with Deep Generative Model
- intro: University of Science and Technology of China & MSR
- arxiv: https://arxiv.org/abs/1611.09502
A Probabilistic Theory of Deep Learning
- arxiv: https://arxiv.org/abs/1504.00641
A Probabilistic Framework for Deep Learning
- intro: Rice University
- arxiv: https://arxiv.org/abs/1612.01936
Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer
- arxiv: https://arxiv.org/abs/1612.03928
- github(PyTorch): https://github.com/szagoruyko/attention-transfer
Risk versus Uncertainty in Deep Learning: Bayes, Bootstrap and the Dangers of Dropout
- intro: Google Deepmind
- paper: http://bayesiandeeplearning.org/papers/BDL_4.pdf
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
- intro: Google Brain & Jagiellonian University
- keywords: Sparsely-Gated Mixture-of-Experts layer (MoE), language modeling and machine translation
- arxiv: https://arxiv.org/abs/1701.06538
- reddit: https://www.reddit.com/r/MachineLearning/comments/5pud72/research_outrageously_large_neural_networks_the/
Deep Network Guided Proof Search
- intro: Google Research & University of Innsbruck
- arxiv: https://arxiv.org/abs/1701.06972
PathNet: Evolution Channels Gradient Descent in Super Neural Networks
- intro: Google DeepMind & Google Brain
- arxiv: https://arxiv.org/abs/1701.08734
- notes: https://medium.com/intuitionmachine/pathnet-a-modular-deep-learning-architecture-for-agi-5302fcf53273#.8f0o6w3en
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
- arxiv: https://arxiv.org/abs/1702.01135
The Power of Sparsity in Convolutional Neural Networks
- arxiv: https://arxiv.org/abs/1702.06257
Learning across scales - A multiscale method for Convolution Neural Networks
- arxiv: https://arxiv.org/abs/1703.02009
Stacking-based Deep Neural Network: Deep Analytic Network on Convolutional Spectral Histogram Features
- arxiv: https://arxiv.org/abs/1703.01396
A Compositional Object-Based Approach to Learning Physical Dynamics
- intro: ICLR 2017. Neural Physics Engine
- paper: https://openreview.net/pdf?id=Bkab5dqxe
- github: https://github.com/mbchang/dynamics
Genetic CNN
- arxiv: https://arxiv.org/abs/1703.01513
- github(Tensorflow): https://github.com/aqibsaeed/Genetic-CNN
Deep Sets
- intro: Amazon Web Services & CMU
- keywords: statistic estimation, point cloud classification, set expansion, and image tagging
- arxiv: https://arxiv.org/abs/1703.06114
Multiscale Hierarchical Convolutional Networks
- arxiv: https://arxiv.org/abs/1703.04140
- github: https://github.com/jhjacobsen/HierarchicalCNN
Deep Neural Networks Do Not Recognize Negative Images
https://arxiv.org/abs/1703.06857
Failures of Deep Learning
- arxiv: https://arxiv.org/abs/1703.07950
- github: https://github.com/shakedshammah/failures_of_DL
Multi-Scale Dense Convolutional Networks for Efficient Prediction
- intro: Cornell University & Tsinghua University & Fudan University & Facebook AI Research
- arxiv: https://arxiv.org/abs/1703.09844
- github: https://github.com/gaohuang/MSDNet
Scaling the Scattering Transform: Deep Hybrid Networks
- arxiv: https://arxiv.org/abs/1703.08961
- github: https://github.com/edouardoyallon/scalingscattering
- github(CuPy/PyTorch): https://github.com/edouardoyallon/pyscatwave
Deep Learning is Robust to Massive Label Noise
https://arxiv.org/abs/1705.10694
Input Fast-Forwarding for Better Deep Learning
- intro: ICIAR 2017
- keywords: Fast-Forward Network (FFNet)
- arxiv: https://arxiv.org/abs/1705.08479
Deep Mutual Learning
- keywords: deep mutual learning (DML)
- arxiv: https://arxiv.org/abs/1706.00384
Automated Problem Identification: Regression vs Classification via Evolutionary Deep Networks
- intro: University of Cape Town
- arxiv: https://arxiv.org/abs/1707.00703
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
- intro: Google Research & CMU
- arxiv: https://arxiv.org/abs/1707.02968
- blog: https://research.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html
Deep Layer Aggregation
- intro: UC Berkeley
- arxiv: https://arxiv.org/abs/1707.06484
Improving Robustness of Feature Representations to Image Deformations using Powered Convolution in CNNs
https://arxiv.org/abs/1707.07830
Learning uncertainty in regression tasks by deep neural networks
- intro: Free University of Berlin
- arxiv: https://arxiv.org/abs/1707.07287
Generalizing the Convolution Operator in Convolutional Neural Networks
https://arxiv.org/abs/1707.09864
Convolution with Logarithmic Filter Groups for Efficient Shallow CNN
https://arxiv.org/abs/1707.09855
Deep Multi-View Learning with Stochastic Decorrelation Loss
https://arxiv.org/abs/1707.09669
Take it in your stride: Do we need striding in CNNs?
https://arxiv.org/abs/1712.02502
Security Risks in Deep Learning Implementation
- intro: Qihoo 360 Security Research Lab & University of Georgia & University of Virginia
- arxiv: https://arxiv.org/abs/1711.11008
Online Learning with Gated Linear Networks
- intro: DeepMind
- arxiv: https://arxiv.org/abs/1712.01897
On the Information Bottleneck Theory of Deep Learning
https://openreview.net/forum?id=ry_WPG-A-¬eId=ry_WPG-A
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
- project page: https://richzhang.github.io/PerceptualSimilarity/
- arxiv: https://arxiv.org/abs/1801.03924
- github: https://github.com//richzhang/PerceptualSimilarity
Less is More: Culling the Training Set to Improve Robustness of Deep Neural Networks
- intro: University of California, Davis
- arxiv: https://arxiv.org/abs/1801.02850
Towards an Understanding of Neural Networks in Natural-Image Spaces
https://arxiv.org/abs/1801.09097
Deep Private-Feature Extraction
https://arxiv.org/abs/1802.03151
Not All Samples Are Created Equal: Deep Learning with Importance Sampling
- intro: Idiap Research Institute
- arxiv: https://arxiv.org/abs/1803.00942
Label Refinery: Improving ImageNet Classification through Label Progression
- intro: Using a Label Refinery improves the state-of-the-art top-1 accuracy of (1) AlexNet from 59.3 to 67.2, (2) MobileNet from 70.6 to 73.39, (3) MobileNet-0.25 from 50.6 to 55.59, (4) VGG19 from 72.7 to 75.46, and (5) Darknet19 from 72.9 to 74.47.
- intro: XNOR AI, University of Washington, Allen AI
- arxiv: https://arxiv.org/abs/1805.02641
- github: https://github.com/hessamb/label-refinery
Exploring the Limits of Weakly Supervised Pretraining
- intro: report the highest ImageNet-1k single-crop, top-1 accuracy to date: 85.4% (97.6% top-5)
- paper: https://research.fb.com/publications/exploring-the-limits-of-weakly-supervised-pretraining/
How Many Samples are Needed to Learn a Convolutional Neural Network?
https://arxiv.org/abs/1805.07883
VisualBackProp for learning using privileged information with CNNs
https://arxiv.org/abs/1805.09474
BAM: Bottleneck Attention Module
- intro: BMVC 2018 (oral). Lunit Inc. & Adobe Research
- arxiv: https://arxiv.org/abs/1807.06514
CBAM: Convolutional Block Attention Module
- intro: ECCV 2018. Lunit Inc. & Adobe Research
- arxiv: https://arxiv.org/abs/1807.06521
Scale equivariance in CNNs with vector fields
- intro: ICML/FAIM 2018 workshop on Towards learning with limited labels: Equivariance, Invariance, and Beyond (oral presentation)
- arxiv: https://arxiv.org/abs/1807.11783
Tutorials and Surveys
A Survey: Time Travel in Deep Learning Space: An Introduction to Deep Learning Models and How Deep Learning Models Evolved from the Initial Ideas
- arxiv: http://arxiv.org/abs/1510.04781
On the Origin of Deep Learning
- intro: CMU. 70 pages, 200 references
- arxiv: https://arxiv.org/abs/1702.07800
Efficient Processing of Deep Neural Networks: A Tutorial and Survey
- intro: MIT
- arxiv: https://arxiv.org/abs/1703.09039
The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches
{https://arxiv.org/abs/1803.01164}(https://arxiv.org/abs/1803.01164)
Mathematics of Deep Learning
A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction
- arxiv: http://arxiv.org/abs/1512.06293
Mathematics of Deep Learning
- intro: Johns Hopkins University & New York University & Tel-Aviv University & University of California, Los Angeles
- arxiv: https://arxiv.org/abs/1712.04741
Local Minima
Local minima in training of deep networks
- intro: DeepMind
- arxiv: https://arxiv.org/abs/1611.06310
Deep linear neural networks with arbitrary loss: All local minima are global
- intro: CMU & University of Southern California & Facebook Artificial Intelligence Research
- arxiv: https://arxiv.org/abs/1712.00779
Gradient Descent Learns One-hidden-layer CNN: Don’t be Afraid of Spurious Local Minima
- intro: Loyola Marymount University & California State University
- arxiv: https://arxiv.org/abs/1712.01473
CNNs are Globally Optimal Given Multi-Layer Support
- intro: CMU
- arxiv: https://arxiv.org/abs/1712.02501
Spurious Local Minima are Common in Two-Layer ReLU Neural Networks
https://arxiv.org/abs/1712.08968
Dive Into CNN
Structured Receptive Fields in CNNs
- arxiv: https://arxiv.org/abs/1605.02971
- github: https://github.com/jhjacobsen/RFNN
How ConvNets model Non-linear Transformations
- arxiv: https://arxiv.org/abs/1702.07664
Separable Convolutions / Grouped Convolutions
Factorized Convolutional Neural Networks
Design of Efficient Convolutional Layers using Single Intra-channel Convolution, Topological Subdivisioning and Spatial “Bottleneck” Structure
- arxiv: http://arxiv.org/abs/1608.04337
STDP
A biological gradient descent for prediction through a combination of STDP and homeostatic plasticity
- arxiv: http://arxiv.org/abs/1206.4812
An objective function for STDP
- arxiv: http://arxiv.org/abs/1509.05936
Towards a Biologically Plausible Backprop
- arxiv: http://arxiv.org/abs/1602.05179
Target Propagation
How Auto-Encoders Could Provide Credit Assignment in Deep Networks via Target Propagation
- arxiv: http://arxiv.org/abs/1407.7906
Difference Target Propagation
- arxiv: http://arxiv.org/abs/1412.7525
- github: https://github.com/donghyunlee/dtp
Zero Shot Learning
Learning a Deep Embedding Model for Zero-Shot Learning
- arxiv: https://arxiv.org/abs/1611.05088
Zero-Shot (Deep) Learning
https://amundtveit.com/2016/11/18/zero-shot-deep-learning/
Zero-shot learning experiments by deep learning.
https://github.com/Elyorcv/zsl-deep-learning
Zero-Shot Learning - The Good, the Bad and the Ugly
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1703.04394
Semantic Autoencoder for Zero-Shot Learning
- intro: CVPR 2017
- project page: https://elyorcv.github.io/projects/sae
- arxiv: https://arxiv.org/abs/1704.08345
- github: https://github.com/Elyorcv/SAE
Zero-Shot Learning via Category-Specific Visual-Semantic Mapping
https://arxiv.org/abs/1711.06167
Zero-Shot Learning via Class-Conditioned Deep Generative Models
- intro: AAAI 2018
- arxiv: https://arxiv.org/abs/1711.05820
Feature Generating Networks for Zero-Shot Learning
https://arxiv.org/abs/1712.00981
Zero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Network
https://arxiv.org/abs/1712.01928
Combining Deep Universal Features, Semantic Attributes, and Hierarchical Classification for Zero-Shot Learning
- intro: extension to work published in conference proceedings of 2017 IAPR MVA Conference
- arxiv: https://arxiv.org/abs/1712.03151
Multi-Context Label Embedding
- keywords: Multi-Context Label Embedding (MCLE)
- arxiv: https://arxiv.org/abs/1805.01199
Incremental Learning
iCaRL: Incremental Classifier and Representation Learning
- arxiv: https://arxiv.org/abs/1611.07725
FearNet: Brain-Inspired Model for Incremental Learning
https://arxiv.org/abs/1711.10563
Incremental Learning in Deep Convolutional Neural Networks Using Partial Network Sharing
- intro: Purdue University
- arxiv: https://arxiv.org/abs/1712.02719
Incremental Classifier Learning with Generative Adversarial Networks
https://arxiv.org/abs/1802.00853
Learn the new, keep the old: Extending pretrained models with new anatomy and images
- intro: MICCAI 2018
- arxiv: https://arxiv.org/abs/1806.00265
Ensemble Deep Learning
Convolutional Neural Fabrics
- intro: NIPS 2016
- arxiv: http://arxiv.org/abs/1606.02492
- github: https://github.com/shreyassaxena/convolutional-neural-fabrics
Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles
- arxiv: https://arxiv.org/abs/1606.07839
- youtube: https://www.youtube.com/watch?v=KjUfMtZjyfg&feature=youtu.be
Snapshot Ensembles: Train 1, Get M for Free
- paper: http://openreview.net/pdf?id=BJYwwY9ll
- github(Torch): https://github.com/gaohuang/SnapshotEnsemble
- github: https://github.com/titu1994/Snapshot-Ensembles
Ensemble Deep Learning
- blog: https://amundtveit.com/2016/12/02/ensemble-deep-learning/
Domain Adaptation
Adversarial Discriminative Domain Adaptation
- intro: UC Berkeley & Stanford University & Boston University
- arxiv: https://arxiv.org/abs/1702.05464
- github: https://github.com//corenel/pytorch-adda
Parameter Reference Loss for Unsupervised Domain Adaptation
https://arxiv.org/abs/1711.07170
Residual Parameter Transfer for Deep Domain Adaptation
https://arxiv.org/abs/1711.07714
Adversarial Feature Augmentation for Unsupervised Domain Adaptation
https://arxiv.org/abs/1711.08561
Image to Image Translation for Domain Adaptation
https://arxiv.org/abs/1712.00479
Incremental Adversarial Domain Adaptation
https://arxiv.org/abs/1712.07436
Deep Visual Domain Adaptation: A Survey
https://arxiv.org/abs/1802.03601
Unsupervised Domain Adaptation: A Multi-task Learning-based Method
https://arxiv.org/abs/1803.09208
Importance Weighted Adversarial Nets for Partial Domain Adaptation
https://arxiv.org/abs/1803.09210
Open Set Domain Adaptation by Backpropagation
https://arxiv.org/abs/1804.10427
Learning Sampling Policies for Domain Adaptation
- intro: CMU
- arxiv: https://arxiv.org/abs/1805.07641
Multi-Adversarial Domain Adaptation
- intro: AAAI 2018 Oral.
- arxiv: https://arxiv.org/abs/1809.02176
Embedding
Learning Deep Embeddings with Histogram Loss
- intro: NIPS 2016
- arxiv: https://arxiv.org/abs/1611.00822
Full-Network Embedding in a Multimodal Embedding Pipeline
https://arxiv.org/abs/1707.09872
Clustering-driven Deep Embedding with Pairwise Constraints
https://arxiv.org/abs/1803.08457
Deep Mixture of Experts via Shallow Embedding
https://arxiv.org/abs/1806.01531
Learning to Learn from Web Data through Deep Semantic Embeddings
- intro: ECCV MULA Workshop 2018
- arxiv: https://arxiv.org/abs/1808.06368
Heated-Up Softmax Embedding
https://arxiv.org/abs/1809.04157
Regression
A Comprehensive Analysis of Deep Regression
https://arxiv.org/abs/1803.08450
Neural Motifs: Scene Graph Parsing with Global Context
- intro: CVPR 2018. University of Washington
- project page: http://rowanzellers.com/neuralmotifs/
- arxiv: https://arxiv.org/abs/1711.06640
- github: https://github.com/rowanz/neural-motifs
- demo: https://rowanzellers.com/scenegraph2/
CapsNets
Dynamic Routing Between Capsules
- intro: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton
- intro: Google Brain, Toronto
- arxiv: https://arxiv.org/abs/1710.09829
- github(official, Tensorflow): https://github.com/Sarasra/models/tree/master/research/capsules
Capsule Networks (CapsNets) – Tutorial
- youtube: https://www.youtube.com/watch?v=pPN8d0E3900
- mirror: http://www.bilibili.com/video/av16594836/
Improved Explainability of Capsule Networks: Relevance Path by Agreement
- intro: Concordia University & University of Toronto
- arxiv: https://arxiv.org/abs/1802.10204
Computer Vision
A Taxonomy of Deep Convolutional Neural Nets for Computer Vision
- arxiv: http://arxiv.org/abs/1601.06615
On the usability of deep networks for object-based image analysis
- intro: GEOBIA 2016
- arxiv: http://arxiv.org/abs/1609.06845
Learning Recursive Filters for Low-Level Vision via a Hybrid Neural Network
- intro: ECCV 2016
- project page: http://www.sifeiliu.net/linear-rnn
- paper: http://faculty.ucmerced.edu/mhyang/papers/eccv16_rnn_filter.pdf
- poster: http://www.eccv2016.org/files/posters/O-3A-03.pdf
- github: https://github.com/Liusifei/caffe-lowlevel
Toward Geometric Deep SLAM
- intro: Magic Leap, Inc
- arxiv: https://arxiv.org/abs/1707.07410
Learning Dual Convolutional Neural Networks for Low-Level Vision
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1805.05020
All-In-One Network
HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition
- arxiv: https://arxiv.org/abs/1603.01249
- summary: https://github.com/aleju/papers/blob/master/neural-nets/HyperFace.md
UberNet: Training a `Universal’ Convolutional Neural Network for Low-, Mid-, and High-Level Vision using Diverse Datasets and Limited Memory
- arxiv: http://arxiv.org/abs/1609.02132
- demo: http://cvn.ecp.fr/ubernet/
An All-In-One Convolutional Neural Network for Face Analysis
- intro: simultaneous face detection, face alignment, pose estimation, gender recognition, smile detection, age estimation and face recognition
- arxiv: https://arxiv.org/abs/1611.00851
MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving
- intro: first place on Kitti Road Segmentation. joint classification, detection and semantic segmentation via a unified architecture, less than 100 ms to perform all tasks
- arxiv: https://arxiv.org/abs/1612.07695
- github: https://github.com/MarvinTeichmann/MultiNet
Adversarial Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation
https://arxiv.org/abs/1805.09806
Deep Learning for Data Structures
The Case for Learned Index Structures
- intro: MIT & Google
- keywords: B-Tree-Index, Hash-Index, BitMap-Index
- arxiv: https://arxiv.org/abs/1712.01208
Projects
Top Deep Learning Projects
- github: https://github.com/aymericdamien/TopDeepLearning
deepnet: Implementation of some deep learning algorithms
- github: https://github.com/nitishsrivastava/deepnet
DeepNeuralClassifier(Julia): Deep neural network using rectified linear units to classify hand written digits from the MNIST dataset
- github: https://github.com/jostmey/DeepNeuralClassifier
Clarifai Node.js Demo
- github: https://github.com/patcat/Clarifai-Node-Demo
- blog(“How to Make Your Web App Smarter with Image Recognition”): http://www.sitepoint.com/how-to-make-your-web-app-smarter-with-image-recognition/
Deep Learning in Rust
- blog(“baby steps”): https://medium.com/@tedsta/deep-learning-in-rust-7e228107cccc#.t0pskuwkm
- blog(“a walk in the park”): https://medium.com/@tedsta/deep-learning-in-rust-a-walk-in-the-park-fed6c87165ea#.pucj1l5yx
- github: https://github.com/tedsta/deeplearn-rs
Implementation of state-of-art models in Torch
- github: https://github.com/aciditeam/torch-models
Deep Learning (Python, C, C++, Java, Scala, Go)
- github: https://github.com/yusugomori/DeepLearning
deepmark: THE Deep Learning Benchmarks
- github: https://github.com/DeepMark/deepmark
Siamese Net
- intro: “This package shows how to train a siamese network using Lasagne and Theano and includes network definitions for state-of-the-art networks including: DeepID, DeepID2, Chopra et. al, and Hani et. al. We also include one pre-trained model using a custom convolutional network.”
- github: https://github.com/Kadenze/siamese_net
PRE-TRAINED CONVNETS AND OBJECT LOCALISATION IN KERAS
- blog: https://blog.heuritech.com/2016/04/26/pre-trained-convnets-and-object-localisation-in-keras/
- github: https://github.com/heuritech/convnets-keras
Deep Learning algorithms with TensorFlow: Ready to use implementations of various Deep Learning algorithms using TensorFlow
- homepage: http://www.gabrieleangeletti.com/
- github: https://github.com/blackecho/Deep-Learning-TensorFlow
Fast Multi-threaded VGG 19 Feature Extractor
- github: https://github.com/coreylynch/vgg-19-feature-extractor
Live demo of neural network classifying images
http://ml4a.github.io/dev/demos/cifar_confusion.html#
mojo cnn: c++ convolutional neural network
- intro: the fast and easy header only c++ convolutional neural network package
- github: https://github.com/gnawice/mojo-cnn
DeepHeart: Neural networks for monitoring cardiac data
- github: https://github.com/jisaacso/DeepHeart
Deep Water: Deep Learning in H2O using Native GPU Backends
- intro: Native implementation of Deep Learning models for GPU backends (mxnet, Caffe, TensorFlow, etc.)
- github: https://github.com/h2oai/deepwater
Greentea LibDNN: Greentea LibDNN - a universal convolution implementation supporting CUDA and OpenCL
- github: https://github.com/naibaf7/libdnn
Dracula: A spookily good Part of Speech Tagger optimized for Twitter
- intro: A deep, LSTM-based part of speech tagger and sentiment analyser using character embeddings instead of words. Compatible with Theano and TensorFlow. Optimized for Twitter.
- homepage: http://dracula.sentimentron.co.uk/
- speech tagging demo: http://dracula.sentimentron.co.uk/pos-demo/
- sentiment demo: http://dracula.sentimentron.co.uk/sentiment-demo/
- github: https://github.com/Sentimentron/Dracula
Trained image classification models for Keras
- intro: Keras code and weights files for popular deep learning models.
- intro: VGG16, VGG19, ResNet50, Inception v3
- github: https://github.com/fchollet/deep-learning-models
PyCNN: Cellular Neural Networks Image Processing Python Library
- blog: http://blog.ankitaggarwal.me/PyCNN/
- github: https://github.com/ankitaggarwal011/PyCNN
regl-cnn: Digit recognition with Convolutional Neural Networks in WebGL
- intro: TensorFlow, WebGL, regl
- github: https://github.com/Erkaman/regl-cnn/
- demo: https://erkaman.github.io/regl-cnn/src/demo.html
dagstudio: Directed Acyclic Graph Studio with Javascript D3
- github: https://github.com/TimZaman/dagstudio
NEUGO: Neural Networks in Go
- github: https://github.com/wh1t3w01f/neugo
gvnn: Neural Network Library for Geometric Computer Vision
- arxiv: http://arxiv.org/abs/1607.07405
- github: https://github.com/ankurhanda/gvnn
DeepForge: A development environment for deep learning
- github: https://github.com/dfst/deepforge
Implementation of recent Deep Learning papers
- intro: DenseNet / DeconvNet / DenseRecNet
- github: https://github.com/tdeboissiere/DeepLearningImplementations
GPU-accelerated Theano & Keras on Windows 10 native
- github: https://github.com/philferriere/dlwin
Head Pose and Gaze Direction Estimation Using Convolutional Neural Networks
- github: https://github.com/mpatacchiola/deepgaze
Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN)
- homepage: https://01.org/mkl-dnn
- github: https://github.com/01org/mkl-dnn
Deep CNN and RNN - Deep convolution/recurrent neural network project with TensorFlow
- github: https://github.com/tobegit3hub/deep_cnn
Experimental implementation of novel neural network structures
- intro: binarynet / ternarynet / qrnn / vae / gcnn
- github: https://github.com/DingKe/nn_playground
WaterNet: A convolutional neural network that identifies water in satellite images
- github: https://github.com/treigerm/WaterNet
Kur: Descriptive Deep Learning
- github: https://github.com/deepgram/kur
- docs: http://kur.deepgram.com/
Development of JavaScript-based deep learning platform and application to distributed training
- intro: Workshop paper for ICLR2017
- arxiv: https://arxiv.org/abs/1702.01846
- github: https://github.com/mil-tokyo
NewralNet
- intro: A lightweight, easy to use and open source Java library for experimenting with feed-forward neural nets and deep learning.
- gitlab: https://gitlab.com/flimmerkiste/NewralNet
FeatherCNN
- intro: FeatherCNN is a high performance inference engine for convolutional neural networks
- github: https://github.com/Tencent/FeatherCNN
Readings and Questions
What you wanted to know about AI
http://fastml.com/what-you-wanted-to-know-about-ai/
Epoch vs iteration when training neural networks
- stackoverflow: http://stackoverflow.com/questions/4752626/epoch-vs-iteration-when-training-neural-networks
Questions to Ask When Applying Deep Learning
http://deeplearning4j.org/questions.html
How can I know if Deep Learning works better for a specific problem than SVM or random forest?
- github: https://github.com/rasbt/python-machine-learning-book/blob/master/faq/deeplearn-vs-svm-randomforest.md
What is the difference between deep learning and usual machine learning?
- note: https://github.com/rasbt/python-machine-learning-book/blob/master/faq/difference-deep-and-normal-learning.md
Resources
Awesome Deep Learning
- github: https://github.com/ChristosChristofidis/awesome-deep-learning
Awesome-deep-vision: A curated list of deep learning resources for computer vision
- website: http://jiwonkim.org/awesome-deep-vision/
- github: https://github.com/kjw0612/awesome-deep-vision
Applied Deep Learning Resources: A collection of research articles, blog posts, slides and code snippets about deep learning in applied settings.
- github: https://github.com/kristjankorjus/applied-deep-learning-resources
Deep Learning Libraries by Language
- website: http://www.teglor.com/b/deep-learning-libraries-language-cm569/
Deep Learning Resources
http://yanirseroussi.com/deep-learning-resources/
Deep Learning Resources
https://omtcyfz.github.io/2016/08/29/Deep-Learning-Resources.html
Turing Machine: musings on theory & code(DEEP LEARNING REVOLUTION, summer 2015, state of the art & topnotch links)
https://vzn1.wordpress.com/2015/09/01/deep-learning-revolution-summer-2015-state-of-the-art-topnotch-links/
BICV Group: Biologically Inspired Computer Vision research group
http://www.bicv.org/deep-learning/
Learning Deep Learning
http://rt.dgyblog.com/ref/ref-learning-deep-learning.html
Summaries and notes on Deep Learning research papers
- github: https://github.com/dennybritz/deeplearning-papernotes
Deep Learning Glossary
- intro: “Simple, opinionated explanations of various things encountered in Deep Learning / AI / ML.”
- author: Ryan Dahl, author of NodeJS.
- github: https://github.com/ry/deep_learning_glossary
The Deep Learning Playbook
https://medium.com/@jiefeng/deep-learning-playbook-c5ebe34f8a1a#.eg9cdz5ak
Deep Learning Study: Study of HeXA@UNIST in Preparation for Submission
- github: https://github.com/carpedm20/deep-learning-study
Deep Learning Books
- blog: http://machinelearningmastery.com/deep-learning-books/
awesome-very-deep-learning: A curated list of papers and code about very deep neural networks (50+ layers)
- github: https://github.com/daviddao/awesome-very-deep-learning
Deep Learning Resources and Tutorials using Keras and Lasagne
- github: https://github.com/Vict0rSch/deep_learning
Deep Learning: Definition, Resources, Comparison with Machine Learning
- blog: http://www.datasciencecentral.com/profiles/blogs/deep-learning-definition-resources-comparison-with-machine-learni
Awesome - Most Cited Deep Learning Papers
- github: https://github.com/terryum/awesome-deep-learning-papers
The most cited papers in computer vision and deep learning
- blog: https://computervisionblog.wordpress.com/2016/06/19/the-most-cited-papers-in-computer-vision-and-deep-learning/
deep learning papers: A place to collect papers that are related to deep learning and computational biology
- github: https://github.com/pimentel/deep_learning_papers
papers-I-read
- intro: “I am trying a new initiative - a-paper-a-week. This repository will hold all those papers and related summaries and notes.”
- github: https://github.com/shagunsodhani/papers-I-read
LEARNING DEEP LEARNING - MY TOP-FIVE LIST
- blog: http://thegrandjanitor.com/2016/08/15/learning-deep-learning-my-top-five-resource/
awesome-free-deep-learning-papers
- github: https://github.com/HFTrader/awesome-free-deep-learning-papers
DeepLearningBibliography: Bibliography for Publications about Deep Learning using GPU
- homepage: http://memkite.com/deep-learning-bibliography/
- github: https://github.com/memkite/DeepLearningBibliography
Deep Learning Papers Reading Roadmap
- github: https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap
deep-learning-papers
- intro: Papers about deep learning ordered by task, date. Current state-of-the-art papers are labelled.
- github: https://github.com/sbrugman/deep-learning-papers/blob/master/README.md
Deep Learning and applications in Startups, CV, Text Mining, NLP
- github: https://github.com/lipiji/app-dl
ml4a-guides - a collection of practical resources for working with machine learning software, including code and tutorials
http://ml4a.github.io/guides/
deep-learning-resources
- intro: A Collection of resources I have found useful on my journey finding my way through the world of Deep Learning.
- github: https://github.com/chasingbob/deep-learning-resources
21 Deep Learning Videos, Tutorials & Courses on Youtube from 2016
https://www.analyticsvidhya.com/blog/2016/12/21-deep-learning-videos-tutorials-courses-on-youtube-from-2016/
Awesome Deep learning papers and other resources
- github: https://github.com/endymecy/awesome-deeplearning-resources
awesome-deep-vision-web-demo
- intro: A curated list of awesome deep vision web demo
- github: https://github.com/hwalsuklee/awesome-deep-vision-web-demo
Summaries of machine learning papers
https://github.com/aleju/papers
Awesome Deep Learning Resources
https://github.com/guillaume-chevalier/awesome-deep-learning-resources
Virginia Tech Vision and Learning Reading Group
https://github.com//vt-vl-lab/reading_group
MEGALODON: ML/DL Resources At One Place
- intro: Various ML/DL Resources organised at a single place.
- arxiv: https://github.com//vyraun/Megalodon
Arxiv Pages
Neural and Evolutionary Computing
https://arxiv.org/list/cs.NE/recent
Learning
https://arxiv.org/list/cs.LG/recent
Computer Vision and Pattern Recognition
https://arxiv.org/list/cs.CV/recent
Arxiv Sanity Preserver
- intro: Built by @karpathy to accelerate research.
- page: http://www.arxiv-sanity.com/
Today’s Deep Learning
http://todaysdeeplearning.com/
arXiv Analytics
http://arxitics.com/
Papers with Code
Papers with Code
https://paperswithcode.com/
DNNGraph - A deep neural network model generation DSL in Haskell
- homepage: http://ajtulloch.github.io/dnngraph/
Deep playground: an interactive visualization of neural networks, written in typescript using d3.js
- homepage: http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.23990&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification
- github: https://github.com/tensorflow/playground
Neural Network Package
- intro: This package provides an easy and modular way to build and train simple or complex neural networks using Torch
- github: https://github.com/torch/nn
deepdish: Deep learning and data science tools from the University of Chicago deepdish: Serving Up Chicago-Style Deep Learning
- homepage: http://deepdish.io/
- github: https://github.com/uchicago-cs/deepdish
AETROS CLI: Console application to manage deep neural network training in AETROS Trainer
- intro: Create, train and monitor deep neural networks using a model designer.
- homepage: http://aetros.com/
- github: https://github.com/aetros/aetros-cli
Deep Learning Studio: Cloud platform for designing Deep Learning AI without programming
http://deepcognition.ai/
cuda-on-cl: Build NVIDIA® CUDA™ code for OpenCL™ 1.2 devices
- github: https://github.com/hughperkins/cuda-on-cl
Receptive Field Calculator
- homepage: http://fomoro.com/tools/receptive-fields/
- example: http://fomoro.com/tools/receptive-fields/#3,1,1,VALID;3,1,1,VALID;3,1,1,VALID
receptivefield
- intro: (PyTorch/Keras/TensorFlow)Gradient based receptive field estimation for Convolutional Neural Networks
- github: https://github.com//fornaxai/receptivefield
Challenges / Hackathons
Open Images Challenge 2018
https://storage.googleapis.com/openimages/web/challenge.html
VisionHack 2017
- intro: 10 - 14 Sep 2017, Moscow, Russia
- intro: a full-fledged hackathon that will last three full days
- homepage: http://visionhack.misis.ru/
NVIDIA AI City Challenge Workshop at CVPR 2018
http://www.aicitychallenge.org/
Books
Deep Learning
- author: Ian Goodfellow, Aaron Courville and Yoshua Bengio
- homepage: http://www.deeplearningbook.org/
- website: http://goodfeli.github.io/dlbook/
- github: https://github.com/HFTrader/DeepLearningBook
- notes(“Deep Learning for Beginners”): http://randomekek.github.io/deep/deeplearning.html
Fundamentals of Deep Learning: Designing Next-Generation Artificial Intelligence Algorithms
- author: Nikhil Buduma
- book review: http://www.opengardensblog.futuretext.com/archives/2015/08/book-review-fundamentals-of-deep-learning-designing-next-generation-artificial-intelligence-algorithms-by-nikhil-buduma.html
- github: https://github.com/darksigma/Fundamentals-of-Deep-Learning-Book
FIRST CONTACT WITH TENSORFLOW: Get started with with Deep Learning programming
- author: Jordi Torres
- book: http://www.jorditorres.org/first-contact-with-tensorflow/
《解析卷积神经网络—深度学习实践手册》
- intro: by 魏秀参(Xiu-Shen WEI)
- homepage: http://lamda.nju.edu.cn/weixs/book/CNN_book.html
Make Your Own Neural Network: IPython Neural Networks on a Raspberry Pi Zero
- book: http://makeyourownneuralnetwork.blogspot.jp/2016/03/ipython-neural-networks-on-raspberry-pi.html
- github: https://github.com/makeyourownneuralnetwork/makeyourownneuralnetwork
Blogs
Neural Networks and Deep Learning
http://neuralnetworksanddeeplearning.com
Deep Learning Reading List
http://deeplearning.net/reading-list/
WILDML: A BLOG ABOUT MACHINE LEARNING, DEEP LEARNING AND NLP.
http://www.wildml.com/
Andrej Karpathy blog
http://karpathy.github.io/
Rodrigob’s github page
http://rodrigob.github.io/
colah’s blog
http://colah.github.io/
What My Deep Model Doesn’t Know…
http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html
Christoph Feichtenhofer
- intro: PhD Student, Graz University of Technology
- homepage: http://feichtenhofer.github.io/
Image recognition is not enough: As with language, photos need contextual intelligence
https://medium.com/@ken_getquik/image-recognition-is-not-enough-293cd7d58004#.dex817l2z
ResNets, HighwayNets, and DenseNets, Oh My!
- blog: https://medium.com/@awjuliani/resnets-highwaynets-and-densenets-oh-my-9bb15918ee32#.pgltg8pro
- github: https://github.com/awjuliani/TF-Tutorials/blob/master/Deep%20Network%20Comparison.ipynb
The Frontiers of Memory and Attention in Deep Learning
- sldies: http://slides.com/smerity/quora-frontiers-of-memory-and-attention#/
Design Patterns for Deep Learning Architectures
http://www.deeplearningpatterns.com/doku.php
Building a Deep Learning Powered GIF Search Engine
- blog: https://medium.com/@zan2434/building-a-deep-learning-powered-gif-search-engine-a3eb309d7525
850k Images in 24 hours: Automating Deep Learning Dataset Creation
https://gab41.lab41.org/850k-images-in-24-hours-automating-deep-learning-dataset-creation-60bdced04275#.xhq9feuxx
How six lines of code + SQL Server can bring Deep Learning to ANY App
- blog: https://blogs.technet.microsoft.com/dataplatforminsider/2017/01/05/how-six-lines-of-code-sql-server-can-bring-deep-learning-to-any-app/
- github: https://github.com/Microsoft/SQL-Server-R-Services-Samples/tree/master/Galaxies
Neural Network Architectures
- blog: https://medium.com/towards-data-science/neural-network-architectures-156e5bad51ba#.m8y39oih6
- blog: https://culurciello.github.io/tech/2016/06/04/nets.html