一阶RC低通滤波
从模拟到数字
本文整理自网络、《匠人手记》等书籍文章
典型电路
图1 典型RC电路
直流、交流、脉冲信号都可以用它
时域
电容电流:
Ic=dqdt=d(C∙Uo)dt=CdUodt
基尔霍夫电压定律得:
Ui=RCdUodt+Uo
Ui的单位是伏特,RC的单位为秒,τ=RC;
解得:
Uo(t)=Ui(1−e∧(−t/RC))
假设电容初始电压值为0
R=1000Ω
C=4.7uF
Ui=1V
t=0.0001~0.1s
τ=RC
Vc(τ)=0.632
图2 一阶RC系统的阶跃响应曲线
频域
u1=Ui;u2=Uo;
以电容电压作为输出,电路的网络函数为:
H(jω)=U2U1=1jωCR+1jωC=11+jωRC
令ωc=
1RC=1τ
ωc即为截止频率;
幅值和相角函数:
|H(jω)|=11+(ωωc)2−−−−−−−−√
θ(ω)=−arctanωωc
各变量取值:
R=1000Ω
C=4.7uF
j=−1−−−√
ω=1RC
fc=12πRC
A(f)=1j2πfRC+1
|A(fc)|=0.707
θ(f)=180arg(A(f))π
θ(fc)=-45
f=0.001、1、…….100000
幅频和相频特性图:
图3
图4
幅频特性图的对数表示:
图5
-当ω<ωc时,幅值是平行于坐标的直线,基本无衰减;
-当ω>>ωc时,是斜率与-20dB/十倍频成比例的一条直线;
-当ω=ωc时,增益衰减至0.707,即-3dB,相位滞后45度,对应低通滤波器,该频率通常被称为截止频率。
缺点:
采用这种模拟滤波器抑制低频干扰时,要求滤波器有较大的时间常数和高精度的RC网络,增大时间常数要求增大R值,其漏电流也随之增大,从而降低了滤波效果;
软件上的一阶低通滤波
优点:
-采用数字滤波算法来实现动态的RC滤波,则能很好的克服模拟滤波器的缺点;
-在模拟常数要求较大的场合这种算法显得更为实用;
-其对于周期干扰有良好的抑制作用,
-比较节省RAM空间
缺点
-不足之处是带来了相位滞后,导致灵敏度低;
-同时它不能滤除频率高于采样频率的二分之一(称为奈奎斯特频率)的干扰(例如采样频率为100Hz,则它不能滤除50Hz以上的干扰信号)对于高于奈奎斯特频率的干扰信号,应该采用模拟滤波器。
-对没有乘、除法运算指令的单片机来说,程序运算工作量较大
基本滤波算法:
算法由来:
频率分析中一阶RC低通滤波在S域的传递函数:
VoutVin=1RCs+1,(s=jω)
通过z变换(方法很多,如一阶前向差分、双线性变换等这里用一阶后向差分法)
s=1−z∧(−1)T,T表示采样周期
带入S域传递函数中:
Y(z)X(z)=1RC1−z∧(−1)T+1=TRC(1−z∧(−1))+T
推导转化为差分方程后可得:
Y(n)=TT+RCX(n)+RCT+RCY(n−1)
通过Z变换把S域的传递函数转化成时域的差分方程,分析可得到
一阶RC数字滤波的基本算法
X为输入,Y为滤波后得输出值,则:
Y(n)=a∗X(n)+(1−a)∗Y(n−1)
a为与RC值有关的一个参数,称为滤波系数,其值决定新采样值在本次滤波结果中所占的权重,其值通常远小于1,当采样间隔t足够小的时候,
a=tRC
-滤波系数越小,滤波结果越平稳,但是灵敏度越低;
-滤波系数越大,灵敏度越高,但是滤波结果越不稳定
-本次输出值主要取决于上次滤波输出值,当前采样值对本次输出贡献比较小,起到修正作用;
-截止频率:
fl=a2πt
例如:t=0.5s (f=2Hz), a=1/32
则fl=(1/32)/(2*3.14*0.5)=0.01Hz;
基本程序:
按照一阶滤波的基本原理与公式写程序,如下:
/*程序中整数运算比小数运算快,为加快程序的处理速度,为计算方便,a取一整数,1-a用256-a来代替,a则取0~255,代表新采样值在滤波结果中的权重(也可将1-a的基数改为100-a,计算结果做相应处理,这里不做说明)*/
char value; //上次滤波值
char filter()
{
char new_value;
new_value=get_ad();//本次采样值
return(256-a)*value/256+a*new_value/256;
}
程序初步优化
减少乘、除的运算次数以提高运算速度。
具体优化办法:
先将新采样值与上次滤波结果进行比较,然后根据比较采用不同的公式计算,这样程序的运算效率提高了一倍;
化解基本公式可得:
当Xn<Y(n−1)时,Yn=Y(n−1)−(Y(n−1)−Xn)×a÷256;
当Xn>Y(n−1)时,Yn=Y(n−1)+(Xn−Y(n−1))×a÷256;
流程图:
程序:
/*入口:NEW_DATA 新采样值
OLD_DATA 上次滤波结果
k 滤波系数(0~255)(代表在滤波结果中的权重)
出口: 本次滤波结果
*/
char filter_1(char NEW_DATA,char OLD_DATA,char k)
{
int result;
if(NEW_DATA128;//+128是为了四色五入
result=result/256;
result=OLD_DATA-result;
}
else if(NEW_DATA>OLD_DATA)
{
result=NEW_DATA-OLD_DATA;
result=result*k;
result=result+128;//+128是为了四色五入
result=result/256;
result=OLD_DATA-result;
}
else result=OLD_DATA;
return((char)result);
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
滤波分析:
当滤波系数为30的时候:
当滤波系数为128的时候:
当滤波系数为200的时候:
可见滤波系数越小,滤波结果越平稳,但是灵敏度越低;滤波系数越大,灵敏度越高,但滤波结果也越不稳定;
不足
-灵敏度和平稳度间的矛盾
-小数舍弃带来的误差
比如:本次采样值=25,上次滤波结果=24,滤波系数=10;
根据算法得本次结果=24.0390625
在单片机中,很少采用浮点数,小数部分要么舍弃,要么进行四色五入。这样结果就变成24;假如采样值一直为25那么,结果永远是24;滤波结果和实际数据一直存在无法消除的误差。
严重时会导致,在数据采样数据稳定在某一数值上时,滤波结果曲线偏离实际值(即滤波结果在稳定时与实际结果存在较大误差);
改善办法
改变滤波系数,增大会导致平稳度降低,滤波系数太大滤波也就丧失意义;
将小数位参与计算,会给CPU带来沉重运算压力;
优化方法 —– 动态调整滤波系数
1、实现功能:
-当数据快速变化时,滤波结果能及时跟进,并且数据的变化越快,灵敏度应该越高(灵敏度优先原则)
-当数据趋于稳定,并在一个范围内振荡时,滤波结果能趋于平稳(平稳度优先原则)
-当数据稳定后,滤波结果能逼近并最终等于采样数据(消除因计算中小数带来的误差)
2、调整前判断:
-数据变化方向是否为同一个方向(如当连续两次的采样值都比其上次滤波结果大时,视为变化方向一致,否则视为不一致)
-数据变化是否较快(主要是判断采样值和上一次滤波结果之间的差值)
3、调整原则:
-当两次数据变化不一致时,说明有抖动,将滤波系数清零,忽略本次新采样值
-当数据持续向一个方向变化时,逐渐提高滤波系数,提供本次采样值得权;
-当数据变化较快(差值>消抖计数加速反应阈值)时,要加速提高滤波系数
调整滤波系数的程序流程:
几个常量参数及其取值范围:
(不同的取值会影响滤波的灵敏度和稳定度)
1、消抖计数加速反应阈值,取值根据数据情况确定
2、消抖计数最大值,一般取值10;
3、滤波系数增量,一般取值范围为10~30
4、滤波系数最大值,一般取值255;
在调用一阶滤波程序前,先调用调整滤波系数程序,对系数进行即时调整
滤波效果
1、当采样数据偶然受到干扰,滤波结果中的干扰完全被滤除
2、当数据在一个范围内振荡时,滤波结果曲线非常平滑,几乎是一根直线
3、当采样数据发生真实的变化时,滤波结果也能比较及时地跟进
4、当采样数据趋于稳定时,滤波结果逐渐逼近并最终等于采样数据
-最终改进算法,兼顾了灵敏度和平稳度的要求;同时又不太消耗系统的RAM;
-只要合理调整几个常量,以使得算法更合适实际应用;
应用
下面是一个使用了动态调整滤波的例子:
程序:
//用MPU6050测得数据;对x轴滤波处理
float K_x=0; //滤波系数
u8 new_flag_x=0;//本次数据变化方向
u8 num_x=0;//滤波计数器
/*****带系数修改的一阶滤波函数
入口: NEW_DATA 新采样的角度值
OLD_DATA 上次滤波获得的角度结果
k 滤波系数(代表在滤波结果中的权重)
flag 上次数据变化方向
出口: result 本次滤波角度结果
*/
float filter_1_x(float NEW_DATA,float OLD_DATA,float k,u8 flag)
{
//角度变化方向,new_flag=1表示角度增加,=0表示角度正在减小
if((NEW_DATA-OLD_DATA)>0)
new_flag_x=1;
else if((NEW_DATA-OLD_DATA)<0)
new_flag_x=0;
if(new_flag_x==flag) //此次变化与前一次变化方向是否一致,相等表示角度变化方向一致
{
num_x++;
if(fabs((NEW_DATA-OLD_DATA))>Threshold_1)
//当变化角度大于Threshold_1度的时候,进行计数器num快速增加,以达到快速增大K值,提高跟随性
num_x+=5;
if(num_x>Threshold_2) //计数阈值设置,当角度递增或递减速度达到一定速率时,增大K值
{
K_x=k+0.2; //0.2为K_x的增长值,看实际需要修改
num_x=0;
}
}
else
{
num_x=0;
K_x=0.01; //角度变化稳定时K_x值,看实际修改
}
OLD_DATA=(1-K_x)*OLD_DATA+K_x*NEW_DATA;
return OLD_DATA;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
上几张图片:
-
-
修改程序中的阈值1和阈值2,可获得不同的滤波效果
————————————
再次声明:本文整理自网络、《匠人手记》等书籍文章,仅作为个人学习笔记