IO多路复用之事件驱动模型

一直不太了解多路复用的概念,在参考了几篇文章之后,先来说一下事件驱动模型

概念:所谓事件驱动,简单地说就是你点什么按钮(即产生什么事件),电脑执行什么操作(即调用什么函数).当然事件不仅限于用户的操作. 事件驱动的核心自然是事件。(摘自百度百科)

举个例子:

在UI编程中,常常要对鼠标点击进行相应,首先如何获得鼠标点击呢?
方式一:创建一个线程,该线程一直循环检测是否有鼠标点击,那么这个方式有以下几个缺点:
1. CPU资源浪费,可能鼠标点击的频率非常小,但是扫描线程还是会一直循环检测,这会造成很多的CPU资源浪费;如果扫描鼠标点击的接口是阻塞的呢?
2. 如果是堵塞的,又会出现下面这样的问题,如果我们不但要扫描鼠标点击,还要扫描键盘是否按下,由于扫描鼠标时被堵塞了,那么可能永远不会去扫描键盘;
3. 如果一个循环需要扫描的设备非常多,这又会引来响应时间的问题;
所以,该方式是非常不好的。

这就引出了事件驱动模型,事件驱动以事件为核心,由事件收集器专门负责收集所有事件,事件处理器做具体的事件响应工作。

目前大部分的UI编程都是事件驱动模型,如很多UI平台都会提供onClick()事件,这个事件就代表鼠标按下事件。事件驱动模型大体思路如下:
1. 有一个事件(消息)队列;
2. 鼠标按下时,往这个队列中增加一个点击事件(消息);
3. 有个循环,不断从队列取出事件,根据不同的事件,调用不同的函数,如onClick()、onKeyDown()等;
4. 事件(消息)一般都各自保存各自的处理函数指针,这样,每个消息都有独立的处理函数;

当我们面对如下的环境时,事件驱动模型通常是一个好的选择:

程序中有许多任务,而且…
任务之间高度独立(因此它们不需要互相通信,或者等待彼此)而且…
在等待事件到来时,某些任务会阻塞。
当应用程序需要在任务间共享可变的数据时,这也是一个不错的选择,因为这里不需要采用同步处理。

网络应用程序通常都有上述这些特点,这使得它们能够很好的契合事件驱动编程模型。

 

 

你可能感兴趣的:(IO)