tensorflow的ckpt及pb模型持久化方式及转化

使用tensorflow训练模型的时候,模型持久化对我们来说非常重要。

  • 如果我们的模型比较复杂,需要的数据比较多,那么在模型的训练时间会耗时很长。如果在训练过程中出现了模型不可预期的错误,导致训练意外终止,那么我们将会前功尽弃。为了解决这一问题,我们可以使用模型持久化(保存为ckpt文件格式)来保存我们在训练过程中的临时数据。、
  • 如果我们训练出的模型需要提供给用户做离线预测,那么我们只需要完成前向传播过程。这个时候我们就可以使用模型持久化(保存为pb文件格式)来只保存前向传播过程中的变量并将变量固定下来,这时候用户只需要提供一个输入即可得到前向传播的预测结果。
  • ckpt和pb持久化方式的区别在于ckpt文件将模型结构与模型权重分离保存,便于训练过程;pb文件则是graph_def的序列化文件,便于发布和离线预测。官方提供freeze_grpah.py脚本来将ckpt文件转为pb文件。

 CKPT模型持久化

  1.  首先定义前向传播过程;
  2. 声明并得到一个Saver;
  3. 使用Saver.save()保存模型;

 

# coding=UTF-8 支持中文编码格式
import tensorflow as tf
import shutil
import os.path

MODEL_DIR = "/home/zheng/PycharmProjects/ckptLoad/Models/"
MODEL_NAME = "model.ckpt"

#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder") #输入占位符,并指定名字,后续模型读取可能会用的
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
predictions = tf.add(_y, 50, name="predictions") #输出节点名字,后续模型读取会用到,比50大返回true,否则返回false

init = tf.global_variables_initializer()
saver = tf.train.Saver() #声明saver用于保存模型

with tf.Session() as sess:
    sess.run(init)
    print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]}) #输入一个数据测试一下
    saver.save(sess, os.path.join(MODEL_DIR, MODEL_NAME)) #模型保存
    print("%d ops in the final graph." % len(tf.get_default_graph().as_graph_def().node)) #得到当前图有几个操作节点
predictions :  [ 101.]
28 ops in the final graph.

 

 注:代码含义请参考注释,需要注意的是可以自定义模型保存的路径

ckpt模型持久化使用起来非常简单,只需要我们声明一个tf.train.Saver,然后调用save()函数,将会话模型保存到指定的目录。执行代码结果,会在我们指定模型目录下出现4个文件

tensorflow的ckpt及pb模型持久化方式及转化_第1张图片

 

  • checkpoint : 记录目录下所有模型文件列表
  • ckpt.data : 保存模型中每个变量的取值
  • ckpt.meta : 保存整个计算图的结构

ckpt模型加载

# -*- coding: utf-8 -*-)
import tensorflow as tf
from numpy.random import RandomState

# 定义训练数据batch的大小
batch_size = 8

#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder") #输入占位符,并指定名字,后续模型读取可能会用的
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
predictions = tf.add(_y, 50, name="predictions") #输出节点名字,后续模型读取会用到,比50大返回true,否则返回false

#saver=tf.train.Saver()
# creare a session,创建一个会话来运行TensorFlow程序
with tf.Session() as sess:

    saver = tf.train.import_meta_graph('/home/zheng/Models/model/model.meta')
    saver.restore(sess, tf.train.latest_checkpoint('/home/zheng/Models/model'))
    #saver.restore(sess, tf.train.latest_checkpoint('/home/zheng/Models/model'))
    # 初始化变量
    sess.run(tf.global_variables_initializer())
    print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]})

代码结果,可以看到运行结果一样

predictions :  [ 101.]

PB模型持久化

  1. 定义运算过程
  2. 通过 get_default_graph().as_graph_def() 得到当前图的计算节点信息
  3. 通过 graph_util.convert_variables_to_constants 将相关节点的values固定
  4. 通过 tf.gfile.GFile 进行模型持久化
# coding=UTF-8
import tensorflow as tf
import shutil
import os.path
from tensorflow.python.framework import graph_util

MODEL_DIR = "/home/zheng/PycharmProjects/pbLoad/Models/"
MODEL_NAME = "model"


#output_graph = "model/pb/add_model.pb"

#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder")
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
predictions = tf.add(_y, 50, name="predictions")
init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]})
    graph_def = tf.get_default_graph().as_graph_def() #得到当前的图的 GraphDef 部分,
                                                      #通过这个部分就可以完成重输入层到
                                                      #输出层的计算过程

    output_graph_def = graph_util.convert_variables_to_constants(  # 模型持久化,将变量值固定
        sess,
        graph_def,
        ["predictions"] #需要保存节点的名字
    )
    with tf.gfile.GFile(os.path.join(MODEL_DIR,MODEL_NAME), "wb") as f:  # 保存模型
        f.write(output_graph_def.SerializeToString())  # 序列化输出
    print("%d ops in the final graph." % len(output_graph_def.node))
    print (predictions)

# for op in tf.get_default_graph().get_operations(): 打印模型节点信息
#     print (op.name)

 结果输出

predictions :  [ 101.]
Converted 2 variables to const ops.
9 ops in the final graph.
Tensor("predictions:0", shape=(1,), dtype=float32)

 

并在指定目录下生成pb文件模型,保存了从输入层到输出层这个计算过程的计算图和相关变量的值,我们得到这个模型后传入一个输入,既可以得到一个预估的输出值

tensorflow的ckpt及pb模型持久化方式及转化_第2张图片

pb模型文件加载

# -*- coding: utf-8 -*-)
from tensorflow.python.platform import gfile
import tensorflow as tf
from numpy.random import RandomState

sess = tf.Session()
with gfile.FastGFile('./Models/model', 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    sess.graph.as_default()
    tf.import_graph_def(graph_def, name='')  # 导入计算图

# 需要有一个初始化的过程
sess.run(tf.global_variables_initializer())
# 需要先复原变量
sess.run('W1:0')
sess.run('B1:0')
# 输入
input_x = sess.graph.get_tensor_by_name('input_holder:0')
#input_y = sess.graph.get_tensor_by_name('y-input:0')
op = sess.graph.get_tensor_by_name('predictions:0')
ret = sess.run(op, feed_dict={input_x:[10]})
print(ret)

输出结果

[ 101.]

我们可以看到结果一致。

ckpt格式转pb格式

 

  1. 通过传入 CKPT 模型的路径得到模型的图和变量数据
  2. 通过 import_meta_graph 导入模型中的图
  3. 通过 saver.restore 从模型中恢复图中各个变量的数据 
  4. 通过 graph_util.convert_variables_to_constants 将模型持久化
# coding=UTF-8
import tensorflow as tf
import os.path
import argparse
from tensorflow.python.framework import graph_util

MODEL_DIR = "/home/zheng/PycharmProjects/ckptToPb/model/"
MODEL_NAME = "frozen_model"

def freeze_graph(model_folder):
    checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
    input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径
    output_graph = os.path.join(MODEL_DIR, MODEL_NAME) #PB模型保存路径

    output_node_names = "predictions" #原模型输出操作节点的名字
    saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True) #得到图、clear_devices :Whether or not to clear the device field for an `Operation` or `Tensor` during import.

    graph = tf.get_default_graph() #获得默认的图
    input_graph_def = graph.as_graph_def()  #返回一个序列化的图代表当前的图

    with tf.Session() as sess:
        saver.restore(sess, input_checkpoint) #恢复图并得到数据

        print "predictions : ", sess.run("predictions:0", feed_dict={"input_holder:0": [10.0]}) # 测试读出来的模型是否正确,注意这里传入的是输出 和输入 节点的 tensor的名字,不是操作节点的名字

        output_graph_def = graph_util.convert_variables_to_constants(  #模型持久化,将变量值固定
            sess,
            input_graph_def,
            output_node_names.split(",") #如果有多个输出节点,以逗号隔开
        )
        with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
            f.write(output_graph_def.SerializeToString()) #序列化输出
        print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点


if __name__ == '__main__':
    #parser = argparse.ArgumentParser()
    #parser.add_argument("model_folder", type=str, help="input ckpt model dir") #命令行解析,help是提示符,type是输入的类型,
    # 这里运行程序时需要带上模型ckpt的路径,不然会报 error: too few arguments
    #aggs = parser.parse_args()
    #freeze_graph(aggs.model_folder)
    freeze_graph("/home/zheng/PycharmProjects/ckptLoad/Models/") #模型目录

注意改变ckpt模型目录及pb文件保存目录 。

 tensorflow的ckpt及pb模型持久化方式及转化_第3张图片

 运行结果为

predictions :  [ 101.]
Converted 2 variables to const ops.
9 ops in the final graph.

 

总结:cpkt文件格式将模型保存为4个文件,pb文件格式为一个。ckpt模型持久化方式将图结构与权重参数分开保存,多了模型更多的细节,适合模型训练阶段;而pb持久化方式完成了从输入到输出的前向传播,完成了端到端的形式,更是个离线使用。

你可能感兴趣的:(tensorflow的ckpt及pb模型持久化方式及转化)