源端口号和目标端口号是不可少的,这一点和 UDP 是一样的。如果没有这两个端口号,数据就不知道应该发给哪个应用。
接下来是包的序号,为什么要给包编号?当然是为了解决乱序的问题。
还应该有的就是确认序号。发出去的包应该有确认,要不然我怎么知道对方有没有收到呢?如果没有收到就应该重新发送,直到送达。这个可以解决不丢包的问题。
TCP 是靠谱的协议,但是这不能说明它面临的网络环境好。从 IP 层面来讲,如果网络状况的确那么差,是没有任何可靠性保证的,而作为 IP 的上一层 TCP 也无能为力,唯一能做的就是不断重传,通过各种算法保证。也就是说,对于 TCP 来讲,IP 层丢不丢包,我管不着,但是我在我的层面上,会努力保证可靠性。
接下来有一些状态位。例如 SYN 是发起一个连接,ACK 是回复,RST 是重新连接,FIN 是结束连接等。TCP 是面向连接的,因而双方要维护连接的状态,这些带状态位的包的发送,会引起双方的状态变更。不像小时候,随便一个不认识的小朋友都能玩在一起,人大了,就变得礼貌,优雅而警觉,人与人遇到会互相热情的寒暄,离开会不舍的道别,但是人与人之间的信任会经过多次交互才能建立。
还有一个重要的就是窗口大小。TCP 要做流量控制,通信双方各声明一个窗口,标识自己当前能够的处理能力,别发送的太快,也别发的太慢。
通过对 TCP 头的解析,我们知道要掌握 TCP 协议,重点应该关注以下几个问题:
所有的问题,首先都要先建立一个连接,所以我们先来看连接维护问题。
TCP 的连接建立,我们常常称为三次握手。
A:您好,我是 A。
B:您好 A,我是 B。
A:您好 B。
我们也常称为“请求 -> 应答 -> 应答之应答”的三个回合。这个看起来简单,很多的细节。
首先,为什么要三次,而不是两次?按说两个人打招呼,一来一回就可以了啊?为了可靠,为什么不是四次?
我们还是假设这个通路是非常不可靠的,A 要发起一个连接,当发了第一个请求杳无音信的时候,会有很多的可能性:
如果 B 不乐意建立连接,则 A 会重试一阵后放弃,连接建立失败,没有问题;如果 B 是乐意建立连接的,则会发送应答包给 A。当然对于 B 来说,这个应答包也是一入网络深似海,不知道能不能到达 A。这个时候 B 自然不能认为连接是建立好了,因为应答包仍然会丢,会绕弯路,或者 A 已经挂了都有可能。
而且这个时候 B 还能碰到一个诡异的现象就是,A 和 B 原来建立了连接,做了简单通信后,结束了连接。但是由于A 建立连接的时候,请求包重复发了几次,有的请求包绕了一大圈又回来了,B 会认为这也是一个正常的的请求的,因此建立了连接,可以想象,这个连接不会进行下去,也没有个终结的时候,纯属单相思了。因而两次握手肯定不行。
B 发送的应答可能会发送多次,但是只要一次到达 A,A 就认为连接已经建立了,因为对于 A
来讲,他的消息有去有回。A 会给 B 发送应答之应答,而 B 也在等这个消息,才能确认连接的建立,只有等到了这个消息,对于 B 来讲,才算它的消息有去有回。
当然 A 发给 B 的应答之应答也会丢,也会绕路,甚至 B 挂了。按理来说,还应该有个应答之应答之应答,这样下去就没底了。所以四次握手是可以的,四十次都可以,关键四百次也不能保证就真的可靠了。只要双方的消息都有去有回,就基本可以了。
好在大部分情况下,A 和 B 建立了连接之后,A 会马上发送数据的,一旦 A 发送数据,则很多问题都得到了解决。例如 A 发给 B 的应答丢了,当 A 后续发送的数据到达的时候,B 可以认为这个连接已经建立,或者 B 压根就挂了,A 发送的数据,会报错,说 B 不可达,A 就知道 B 出事情了。
当然你可以说 A 比较坏,就是不发数据,建立连接后空着。我们在程序设计的时候,可以要求开启 keepalive 机制,即使没有真实的数据包,也有探活包。另外,你作为服务端 B 的程序设计者,对于 A 这种长时间不发包的客户端,可以主动关闭,从而空出资源来给其他客户端使用。
三次握手除了双方建立连接外,主要还是为了沟通一件事情,就是TCP 包的序号的问题
A 要告诉 B,我这面发起的包的序号起始是从哪个号开始的,B 同样也要告诉 A,B 发起的包的序号起始是从哪个号开始的。为什么序号不能都从 1 开始呢?因为这样往往会出现冲突。
例如,A 连上 B 之后,发送了 1、2、3 三个包,但是发送 3 的时候,中间丢了,或者绕路了,于是重新发送,后来 A 掉线了,重新连上 B 后,序号又从 1 开始,然后发送 2,但是压根没想发送 3,但是上次绕路的那个 3 又回来了,发给了 B,B 自然认为,这就是下一个包,于是发生了错误。
因而,每个连接都要有不同的序号。这个序号的起始序号是随着时间变化的,可以看成一个 32位的计数器,每 4ms 加一,如果计算一下,如果到重复,需要 4 个多小时,那个绕路的包早就死翘翘了,因为我们都知道 IP 包头里面有个 TTL,也即生存时间。
好了,双方终于建立了信任,建立了连接。前面也说过,为了维护这个连接,双方都要维护一个状态机,在连接建立的过程中,双方的状态变化时序图就像这样。
一开始,客户端和服务端都处于 CLOSED 状态。先是服务端主动监听某个端口,处于 LISTEN状态。然后客户端主动发起连接 SYN,之后处于 SYN-SENT 状态。服务端收到发起的连接,返回 SYN,并且 ACK 客户端的 SYN,之后处于 SYN-RCVD 状态。客户端收到服务端发送的SYN 和 ACK 之后,发送 ACK 的 ACK,之后处于 ESTABLISHED 状态,因为它一发一收成功了。服务端收到 ACK 的 ACK 之后,处于 ESTABLISHED 状态,因为它也一发一收了。
这个时候,还只是 A 不想玩了,也即 A 不会再发送数据,但是 B 不能在 ACK 的时候,直接关闭呢,很有可能 A 是发完了最后的数据就准备不玩了,但是 B 还没做完自己的事情,还是可以发送数据的,所以称为半关闭的状态。
这个时候 A 可以选择不再接收数据了,也可以选择最后再接收一段数据,等待 B 也主动关闭
这样整个连接就关闭了。但是这个过程有没有异常情况呢?当然有,上面是和平分手的场面。A 开始说“不玩了”,B 说“知道了”,这个回合,是没什么问题的,因为在此之前,双方还处于合作的状态,如果 A 说“不玩了”,没有收到回复,则 A 会重新发送“不玩了”。但是这个回合结束之后,就有可能出现异常情况了,因为已经有一方率先撕破脸。
一种情况是,A 说完“不玩了”之后,直接跑路,是会有问题的,因为 B 还没有发起结束,而如果 A 跑路,B 就算发起结束,也得不到回答,B 就不知道该怎么办了。另一种情况是,A 说完“不玩了”,B 直接跑路,也是有问题的,因为 A 不知道 B 是还有事情要处理,还是过一会儿会发送结束。
那怎么解决这些问题呢?TCP 协议专门设计了几个状态来处理这些问题。我们来看断开连接的时候的状态时序图。
断开的时候,我们可以看到,当 A 说“不玩了”,就进入 FIN_WAIT_1 的状态,B 收到“A 不玩”的消息后,发送知道了,就进入 CLOSE_WAIT 的状态。
A 收到“B 说知道了”,就进入 FIN_WAIT_2 的状态,如果这个时候 B 直接跑路,则 A 将永远在这个状态。TCP 协议里面并没有对这个状态的处理,但是 Linux 有,可以调整
tcp_fin_timeout 这个参数,设置一个超时时间。
如果 B 没有跑路,发送了“B 也不玩了”的请求到达 A 时,A 发送“知道 B 也不玩了”的 ACK
后,从 FIN_WAIT_2 状态结束,按说 A 可以跑路了,但是最后的这个 ACK 万一 B 收不到呢?则 B 会重新发一个“B 不玩了”,这个时候 A 已经跑路了的话,B 就再也收不到 ACK 了,因而 TCP 协议要求 A 最后等待一段时间 TIME_WAIT,这个时间要足够长,长到如果 B 没收到 ACK 的话,“B 说不玩了”会重发的,A 会重新发一个 ACK 并且足够时间到达 B。
A 直接跑路还有一个问题是,A 的端口就直接空出来了,但是 B 不知道,B 原来发过的很多包很可能还在路上,如果 A 的端口被一个新的应用占用了,这个新的应用会收到上个连接中 B 发过来的包,虽然序列号是重新生成的,但是这里要上一个双保险,防止产生混乱,因而也需要等足够长的时间,等到原来 B 发送的所有的包都死翘翘,再空出端口来。
等待的时间设为 2MSL,MSL是Maximum Segment Lifetime,报文最大生存时间,它是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。因为 TCP 报文基于是 IP 协议的,而 IP 头中有一个 TTL 域,是 IP 数据报可以经过的最大路由数,每经过一个处理他的路由器此值就减 1,当此值为 0 则数据报将被丢弃,同时发送 ICMP 报文通知源主机。协议规定 MSL 为 2 分钟,实际应用中常用的是 30 秒,1 分钟和 2 分钟等。
还有一个异常情况就是,B 超过了 2MSL 的时间,依然没有收到它发的 FIN 的 ACK,怎么办呢?按照 TCP 的原理,B 当然还会重发 FIN,这个时候 A 再收到这个包之后,A 就表示,我已经在这里等了这么长时间了,已经仁至义尽了,之后的我就都不认了,于是就直接发送 RST,B 就知道 A 早就跑了。
将连接建立和连接断开的两个时序状态图综合起来,就是这个著名的 TCP 的状态机。
加黑加粗的部分,是上面说到的主要流程,其中阿拉伯数字的序号,是连接过程中的顺序,而大写中文数字的序号,是连接断开过程中的顺序。加粗的实线是客户端 A 的状态变迁,加粗的虚线是服务端 B 的状态变迁。