猴子选大王问题是一个十分经典的算法问题,这个问题是这样的:一堆猴子都有编号,编号是1,2,3 ...m,这群猴子(m个)按照1-m的顺序围坐一圈,从第1开始数,每数到第N个,该猴子就要离开此圈,这样依次下来,直到圈中只剩下最后一只猴子,则该猴子为大王。
这个问题要解决起来并不难,但求解的方法很多;题目的变化形式也很多,而我们统称这类问题为约瑟夫问题。这类题目基本的描述为:N个人围成一圈,从第一个开始报数,第M个将被杀掉,最后剩下一个,其余人都将被杀掉。例如N=6,M=5,被杀掉的顺序是:5,4,6,2,3,1。下面我们先来分析一下解决这类问题的几个步骤。
(1)由于对于每个人只有死和活两种状态,因此可以用布朗型数组标记每个人的状态,可用true表示死,false表示活。
(2)开始时每个人都是活的,所以数组初值全部赋为false。
(3)模拟杀人过程,直到所有人都被杀死为止。
题目中N个人围成一圈,因而启发我们用一个循环的链来表示,可以使用数组结构来构成一个循环链表。结构中有两个成员,其一为指向下一个人的指针,以构成环形的链;其二为该人是否被杀死的标记,为1表示还存活。从第一个人开始对还存活的人进行计数,每数到M时,将结构中的标记改为0,表示该人已被杀死。这样循环计数直到有15个人被杀死为止。
但是,无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。
为了讨论方便,先把问题稍微改变一下,并不影响原意:
问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。
我们知道第一个人(编号一定是(m-1)) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m mod n的人开始):
k k+1 k+2 ... n-2,n-1,0,1,2,... k-2
并且从k开始报0。
我们把他们的编号做一下转换:
k --> 0
k+1 --> 1
k+2 --> 2
...
...
k-2 --> n-2
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k) mod n
如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:
令f表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]
递推公式
f[1]=0;
f[i]=(f[i-1]+m) mod i; (i>1)
有了这个公式,我们要做的就是从1-n顺序算出f的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1
由于是逐级递推,不需要保存每个f,程序也是异常简单:
1 package com.jredu100.ch4.test; 2 3 import java.util.Scanner; 4 /** 5 * 约瑟夫问题 6 * @author ymyBlogs 7 * 8 */ 9 public class Test11 { 10 11 public static void main(String[] args) { 12 // TODO Auto-generated method stub 13 int s=0; 14 int M=3; 15 Scanner sc=new Scanner(System.in); 16 System.out.println("请输入人数:"); 17 int n=sc.nextInt(); 18 for(int i=2;i<=n;i++){ //注:此处第一个i=1或者2 都不影响结果 因为i=1时输出的编号为零 零带入公式不影响结果 19 s=(s+M)%i; 20 } 21 System.out.println("最终位置为:"); 22 System.out.println(s+1); 23 } 24 25 }
这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算n,m等于一百万,一千万的情况不是问题了。可见,适当地运用数学策略,不仅可以让编程变得简单,而且往往会成倍地提高算法执行效率。
转自 博客园https://www.cnblogs.com/ymyBlogs/p/8638082.html
如有侵权请联系删除