本文以ARM64为例,介绍如何添加系统调用,首先来介绍一些代码执行流程:
首先来看异常向量表的配置,内核在arch/arm64/kernel/entry.S汇编代码中设置了异常向量表。
/*
* Exception vectors.
*/
.pushsection ".entry.text", "ax"
.align 11
ENTRY(vectors)
kernel_ventry 1, sync_invalid // Synchronous EL1t
kernel_ventry 1, irq_invalid // IRQ EL1t
kernel_ventry 1, fiq_invalid // FIQ EL1t
kernel_ventry 1, error_invalid // Error EL1t
kernel_ventry 1, sync // Synchronous EL1h
kernel_ventry 1, irq // IRQ EL1h
kernel_ventry 1, fiq_invalid // FIQ EL1h
kernel_ventry 1, error_invalid // Error EL1h
kernel_ventry 0, sync // Synchronous 64-bit EL0
kernel_ventry 0, irq // IRQ 64-bit EL0
kernel_ventry 0, fiq_invalid // FIQ 64-bit EL0
kernel_ventry 0, error_invalid // Error 64-bit EL0
#ifdef CONFIG_COMPAT
kernel_ventry 0, sync_compat, 32 // Synchronous 32-bit EL0
kernel_ventry 0, irq_compat, 32 // IRQ 32-bit EL0
kernel_ventry 0, fiq_invalid_compat, 32 // FIQ 32-bit EL0
kernel_ventry 0, error_invalid_compat, 32 // Error 32-bit EL0
#else
kernel_ventry 0, sync_invalid, 32 // Synchronous 32-bit EL0
kernel_ventry 0, irq_invalid, 32 // IRQ 32-bit EL0
kernel_ventry 0, fiq_invalid, 32 // FIQ 32-bit EL0
kernel_ventry 0, error_invalid, 32 // Error 32-bit EL0
#endif
END(vectors)
上面的代码进一步展开,即使就是设置不同mode下的异常向量表,异常可以分为4组,每组异常有4个,所以这里一共会设置16个entry。4组异常分别对应4种情况下发生异常时的处理。上面的4组,按照顺序分别对应如下4中情况:
(1)运行级别不发生切换,从ELx变化到ELx,使用SP_EL0,这种情况在Linux kernel都是不处理的,使用invalid entry。
(2)运行级别不发生切换,从ELx变化到ELx,使用SP_ELx。这种情况下在Linux中比较常见。
(3)异常需要进行级别切换来进行处理,并且使用aarch64模式处理,比如64位用户态程序发生系统调用,CPU会从EL0切换到EL1,并且使用aarch64模式处理异常。
(4)异常需要进行级别切换来进行处理,并且使用aarch32模式处理。比如32位用户态程序发生系统调用,CPU会从EL0切换到EL1,并且使用aarch32模式进行处理。
前面设置了异常向量表,我们来进一步查看SVC mode的处理。当系统调用时CPU会切换到SVC mode,并跳转到对应的地址去运行。
kernel中会配置两个SVC Handler,分别对应这SVC_32/SVC_64两种mode,32bit程序和64bit程序执行系统调用会跳转到两个不同的handler去执行。
内核在arch/arm64/kernel/entry.S汇编代码中设置了SVC异常entry。
如下函数设置了64-bit状态下的异常向量表设置,其中红色部分是svc handler配置:
arch/arm64/kernel/entry.S:
.align 6
el0_sync:
kernel_entry 0
mrs x25, esr_el1 // read the syndrome register
lsr x24, x25, #ESR_ELx_EC_SHIFT // exception class
cmp x24, #ESR_ELx_EC_SVC64 // SVC in 64-bit state
b.eq el0_svc
cmp x24, #ESR_ELx_EC_DABT_LOW // data abort in EL0
b.eq el0_da
cmp x24, #ESR_ELx_EC_IABT_LOW // instruction abort in EL0
b.eq el0_ia
cmp x24, #ESR_ELx_EC_FP_ASIMD // FP/ASIMD access
b.eq el0_fpsimd_acc
cmp x24, #ESR_ELx_EC_FP_EXC64 // FP/ASIMD exception
b.eq el0_fpsimd_exc
cmp x24, #ESR_ELx_EC_SYS64 // configurable trap
b.eq el0_sys
cmp x24, #ESR_ELx_EC_SP_ALIGN // stack alignment exception
b.eq el0_sp_pc
cmp x24, #ESR_ELx_EC_PC_ALIGN // pc alignment exception
b.eq el0_sp_pc
cmp x24, #ESR_ELx_EC_UNKNOWN // unknown exception in EL0
b.eq el0_undef
cmp x24, #ESR_ELx_EC_BREAKPT_LOW // debug exception in EL0
b.ge el0_dbg
b el0_inv
el0_svc的实现如下:
/*
* SVC handler.
*/
.align 6
el0_svc:
adrp stbl, sys_call_table // load syscall table pointer
uxtw scno, w8 // syscall number in w8
mov sc_nr, #__NR_syscalls
el0_svc_naked: // compat entry point
stp x0, scno, [sp, #S_ORIG_X0] // save the original x0 and syscall number
enable_dbg_and_irq
ct_user_exit 1
ldr x16, [tsk, #TSK_TI_FLAGS] // check for syscall hooks
tst x16, #_TIF_SYSCALL_WORK
b.ne __sys_trace
cmp scno, sc_nr // check upper syscall limit
b.hs ni_sys
ldr x16, [stbl, scno, lsl #3] // address in the syscall table
blr x16 // call sys_* routine
b ret_fast_syscall
ni_sys:
mov x0, sp
bl do_ni_syscall
b ret_fast_syscall
ENDPROC(el0_svc)
可以看到它会去查找sys_call_table这个数组并找到对应的系统调用函数去执行,注意其中有一个关键函数do_ni_syscall,(no implement syscall),当系统调用遇到一些限制或者问题时会跳转到该函数去执行。
sys_call_table的定义在如下文件中:
arch/arm64/kernel/sys.c:
/*
* The sys_call_table array must be 4K aligned to be accessible from
* kernel/entry.S.
*/
void * const sys_call_table[__NR_syscalls] __aligned(4096) = {
[0 ... __NR_syscalls - 1] = sys_ni_syscall,
#include
};
这个数组在创建时首先会把所有的数组成员设置为sys_ni_syscall,而后根据asm/unistd.h中的内容做进一步初始化。其实最终该头文件会把include/uapi/asm-generic//unistd.h包含进来,也就是这个头文件会是最终定义数组的地方。
......
__SYSCALL(__NR_epoll_wait, sys_epoll_wait)
#define __NR_ustat 1070
__SYSCALL(__NR_ustat, sys_ustat)
#define __NR_vfork 1071
__SYSCALL(__NR_vfork, sys_vfork)
#define __NR_oldwait4 1072
__SYSCALL(__NR_oldwait4, sys_wait4)
#define __NR_recv 1073
__SYSCALL(__NR_recv, sys_recv)
#define __NR_send 1074
__SYSCALL(__NR_send, sys_send)
#define __NR_bdflush 1075
__SYSCALL(__NR_bdflush, sys_bdflush)
#define __NR_umount 1076
__SYSCALL(__NR_umount, sys_oldumount)
#define __ARCH_WANT_SYS_OLDUMOUNT
#define __NR_uselib 1077
__SYSCALL(__NR_uselib, sys_uselib)
#define __NR__sysctl 1078
__SYSCALL(__NR__sysctl, sys_sysctl)
#define __NR_fork 1079
#ifdef CONFIG_MMU
__SYSCALL(__NR_fork, sys_fork)
#else
__SYSCALL(__NR_fork, sys_ni_syscall)
#endif /* CONFIG_MMU */
......
如下函数设置了32-bit状态下的异常向量表设置,其中红色部分是svc handler配置:
arch/arm64/kernel/entry.S
#ifdef CONFIG_COMPAT
.align 6
el0_sync_compat:
kernel_entry 0, 32
mrs x25, esr_el1 // read the syndrome register
lsr x24, x25, #ESR_ELx_EC_SHIFT // exception class
cmp x24, #ESR_ELx_EC_SVC32 // SVC in 32-bit state
b.eq el0_svc_compat
cmp x24, #ESR_ELx_EC_DABT_LOW // data abort in EL0
b.eq el0_da
cmp x24, #ESR_ELx_EC_IABT_LOW // instruction abort in EL0
b.eq el0_ia
cmp x24, #ESR_ELx_EC_FP_ASIMD // FP/ASIMD access
b.eq el0_fpsimd_acc
cmp x24, #ESR_ELx_EC_FP_EXC32 // FP/ASIMD exception
b.eq el0_fpsimd_exc
cmp x24, #ESR_ELx_EC_PC_ALIGN // pc alignment exception
b.eq el0_sp_pc
cmp x24, #ESR_ELx_EC_UNKNOWN // unknown exception in EL0
b.eq el0_undef
cmp x24, #ESR_ELx_EC_CP15_32 // CP15 MRC/MCR trap
b.eq el0_undef
cmp x24, #ESR_ELx_EC_CP15_64 // CP15 MRRC/MCRR trap
b.eq el0_undef
cmp x24, #ESR_ELx_EC_CP14_MR // CP14 MRC/MCR trap
b.eq el0_undef
cmp x24, #ESR_ELx_EC_CP14_LS // CP14 LDC/STC trap
b.eq el0_undef
cmp x24, #ESR_ELx_EC_CP14_64 // CP14 MRRC/MCRR trap
b.eq el0_undef
cmp x24, #ESR_ELx_EC_BREAKPT_LOW // debug exception in EL0
b.ge el0_dbg
b el0_inv
el0_svc_compat:
/*
* AArch32 syscall handling
*/
adrp stbl, compat_sys_call_table // load compat syscall table pointer
uxtw scno, w7 // syscall number in w7 (r7)
mov sc_nr, #__NR_compat_syscalls
b el0_svc_naked
.align 6
el0_irq_compat:
kernel_entry 0, 32
b el0_irq_naked
#endif
el0_svc_compat的实现如下:
el0_svc_compat:
/*
* AArch32 syscall handling
*/
adrp stbl, compat_sys_call_table // load compat syscall table pointer
uxtw scno, w7 // syscall number in w7 (r7)
mov sc_nr, #__NR_compat_syscalls
b el0_svc_naked
.align 6
el0_irq_compat:
kernel_entry 0, 32
b el0_irq_naked
可以看到它会去查找compat_sys_call_table这个数组并找到对应的系统调用函数去执行,compat_sys_call_table的定义在如下文件中:
arch/arm64/kernel/sys32.c:
/*
* The sys_call_table array must be 4K aligned to be accessible from
* kernel/entry.S.
*/
void * const compat_sys_call_table[__NR_compat_syscalls] __aligned(4096) = {
[0 ... __NR_compat_syscalls - 1] = sys_ni_syscall,
#include
};
这个数组在创建时首先会把所有的数组成员设置为sys_ni_syscall,而后根据asm/unistd32.h中的内容做进一步初始化。其实最终该头文件会把arch/arm64/include/asm/unistd32.h包含进来,也就是这个头文件会是最终定义函数数组的地方。
arch/arm64/include/asm/unistd32.h:
......
__SYSCALL(__NR_process_vm_writev, compat_sys_process_vm_writev)
#define __NR_kcmp 378
__SYSCALL(__NR_kcmp, sys_kcmp)
#define __NR_finit_module 379
__SYSCALL(__NR_finit_module, sys_finit_module)
#define __NR_sched_setattr 380
__SYSCALL(__NR_sched_setattr, sys_sched_setattr)
#define __NR_sched_getattr 381
__SYSCALL(__NR_sched_getattr, sys_sched_getattr)
#define __NR_renameat2 382
__SYSCALL(__NR_renameat2, sys_renameat2)
#define __NR_seccomp 383
__SYSCALL(__NR_seccomp, sys_seccomp)
#define __NR_getrandom 384
__SYSCALL(__NR_getrandom, sys_getrandom)
#define __NR_memfd_create 385
__SYSCALL(__NR_memfd_create, sys_memfd_create)
#define __NR_bpf 386
__SYSCALL(__NR_bpf, sys_bpf)
#define __NR_execveat 387
__SYSCALL(__NR_execveat, compat_sys_execveat)
#define __NR_userfaultfd 388
__SYSCALL(__NR_userfaultfd, sys_userfaultfd)
#define __NR_membarrier 389
__SYSCALL(__NR_membarrier, sys_membarrier)
#define __NR_mlock2 390
__SYSCALL(__NR_mlock2, sys_mlock2)
#define __NR_copy_file_range 391
__SYSCALL(__NR_copy_file_range, sys_copy_file_range)
#define __NR_preadv2 392
__SYSCALL(__NR_preadv2, compat_sys_preadv2)
#define __NR_pwritev2 393
__SYSCALL(__NR_pwritev2, compat_sys_pwritev2)
......
最后来看一下do_ni_syscall,内核中没有意义的系统调用号都会执行到该函数上面:
asmlinkage long do_ni_syscall(struct pt_regs *regs)
{
#ifdef CONFIG_COMPAT
long ret;
if (is_compat_task()) {
ret = compat_arm_syscall(regs);
if (ret != -ENOSYS)
return ret;
}
#endif
if (show_unhandled_signals_ratelimited()) {
pr_info("%s[%d]: syscall %d\n", current->comm
task_pid_nr(current), (int)regs->syscallno);
dump_instr("", regs);
if (user_mode(regs))
__show_regs(regs);
}
return sys_ni_syscall();
}
本文基于kernel-4.9版本,原创文章,转载请标注。