欧拉函数简介:
欧拉函数只是工具:提供1到N中与N互质的数
欧拉函数在OI中是个非常重要的东西,不知道的话会吃大亏的.
欧拉函数用希腊字母φ表示,φ(N)表示N的欧拉函数.
对φ(N)的值,我们可以通俗地理解为小于N且与N互质的数的个数(包含1).
欧拉函数的一些性质:
1.对于素数p, φ(p)=p-1,对于对两个素数p,q φ(pq)=pq-1
欧拉函数是积性函数,但不是完全积性函数.
证明:
函数的积性即:若m,n互质,则φ(mn)=φ(m)φ(n).由“m,n互质”可知m,n无公因数,所以φ(m)φ(n)=m(1-1/p1)(1-1/p2)(1-1/p3)…(1-1/pn)·n(1-1/p1')(1-1/p2')(1-1/p3')…(1-1/pn'),其中p1,p2,p3...pn为m的质因数,p1',p2',p3'...pn'为n的质因数,而m,n无公因数,所以p1,p2,p3...pn,p1',p2',p3'...pn'互不相同,所以p1,p2,p3...pn,p1',p2',p3'...pn'均为mn的质因数且为mn质因数的全集,所以φ(mn)=mn(1-1/p1)(1-1/p2)(1-1/p3)…(1-1/pn)(1-1/p1')(1-1/p2')(1-1/p3')…(1-1/pn'),所以φ(mn)=φ(m)φ(n).
即φ(mn)=φ(n)*φ(m)只在(n,m)=1时成立.
2.对于一个正整数N的素数幂分解N=P1^q1*P2^q2*...*Pn^qn.
φ(N)=N*(1-1/P1)*(1-1/P2)*...*(1-1/Pn).
3.除了N=2,φ(N)都是偶数.
4.设N为正整数,∑φ(d)=N (d|N).
根据性质2,我们可以在O(sqrt(n))的时间内求出一个数的欧拉函数值.
如果我们要求1000000以内所有数的欧拉函数,怎么办.
上面的方法复杂度将高达O(N*sqrt(N)).
我们来看看线性筛法的程序:
代码来源:http://blog.csdn.net/once_hnu/article/details/6302868
它在O(N)的时间内遍历了所有的数,并且有很多的附加信息,
那么我们是不是能在筛素数的同时求出所有数的欧拉函数呢.
答案是可以.
φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1、p2…pk为n的所有素因子。
比如:φ(12)=12*(1-1/2)(1-1/3)=4。
利用这个就比较好求了,可以用类似求素数的筛法。
先筛出N以内的所有素数,再以素数筛每个数的φ值。
比如求10以内所有数的φ值:
设一数组phi[11],赋初值phi[1]=1,phi[2]=2...phi[10]=10;
然后从2开始循环,把2的倍数的φ值*(1-1/2),则phi[2]=2*1/2=1,phi[4]=4*1/2=2,phi[6]=6*1/2=3....;
再是3,3的倍数的φ值*(1-1/3),则phi[3]=3*2/3=2,phi[6]=3*2/3=2,phi[9]=.....;
再5,再7...因为对每个素数都进行如此操作,因此任何一个n都得到了φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk)的运算
觉得这个“筛”还是比较好用的,以前求数的所有因子之和也是用的它。
代码如下:
void Init(){
euler[1]=1;
for(int i=2;i
我们知道,一个数K能分解成p1^(q1)*p2^(q2)...
那么,这个数的因子个数就是(1+q1)*(1+q2)*...*(1+qk)
1.HDOJ2588
来源:http://blog.csdn.net/ydd97/article/details/47858679
给定N,M求gcd(i,N)>=M的i的个数
我们可以分解N=a*b, i=a*d(b>=d 且b,d互质),那么我们要求的就是a》=m的时候d的个数(b随a而确定)
由于b>=d且b,d互质,所以这个数目就是φ(b)-1
但是,如果对于每个a枚举b,铁定超时。(仍然O((N-M)*sqrt(N))的复杂度)
但是如果单纯这样全部枚举的话依旧会超时,所以我们要想一个办法去优化它。
我们可以折半枚举,这里的折半并不是二分的意思。
我们先看,我们枚举时,当i
我们这种枚举时间会快非常多
这里要注意一个问题:对于所有小于N的数字,和N互质的数和N的因数并不能覆盖从1到N的所有数,比如N=6,4既不是6的因数也不和6互质,对于所有因数的gcd的和很好求(简单排列组合),但是对于这些既不是因数也不互质的数,不是那么简单。
因此我想暴力实现,但是发现折半搜索失败了。原因是因为折半搜索只能搜索一个数字的因数,像刚才那样的N=6来说,4是没有被搜索到的
所以,想用整除性来搜索全部数字,是不可能的
利用积性函数的做法:
在数论中的积性函数:对于正整数n的一个函数 f(n),当中f(1)=1且当a,b互质,f(ab)=f(a)f(b),在数论上就称它为积性函数。若某函数f(n)符合f(1)=1,且就算a,b不互质,f(ab)=f(a)f(b),则称它为完全积性函数。
欧拉函数,gcd(n,k)(当k固定时)都是积性函数
且当i,j互素时,gcd(i*j,m)=gcd(i,m)*gcd(j,m),所以gcd(n,k)是积性函数
同时,积性函数的和也是积性函数
下文来源:http://lydws.blog.163.com/blog/static/22621105120152265175340/
小于N并且不互质的数字和
注意:判断互质不能用N%i==0,比如6,4,判断互质的方式是GCD
N的范围是32位整数范围
直观想法: 所有小于n且与n为非互质数和=所有小于n数的和-所有小于n且与n互质的数的和