linux mmap 底层原理

aarch32  linux3.18

userspace 的mmap使用方法,mmap 用法如下

void *mmap(void *start, size_t length, int prot, int flags,int fd, off_t offset);

int munmap(void *start, size_t length);

返回说明:

成功执行时,mmap()返回被映射区的指针,munmap()返回0。失败时,mmap()返回MAP_FAILED[其值为(void *)-1],munmap返回-1。

start:映射区的开始地址。

length:映射区的长度。

prot:期望的内存保护标志,不能与文件的打开模式冲突。是以下的某个值,可以通过or运算合理地组合在一起

PROT_EXEC //页内容可以被执行

PROT_READ //页内容可以被读取

PROT_WRITE //页可以被写入

PROT_NONE //页不可访问

flags:指定映射对象的类型,映射选项和映射页是否可以共享。它的值可以是一个或者多个以下位的组合体

MAP_FIXED //使用指定的映射起始地址,如果由start和len参数指定的内存区重叠于现存的映射空间,重叠部分将会被丢弃。如果指定的起始地址不可用,操作将会失败。并且起始地址必须落在页的边界上。

MAP_SHARED //与其它所有映射这个对象的进程共享映射空间。对共享区的写入,相当于输出到文件。直到msync()或者munmap()被调用,文件实际上不会被更新。

MAP_PRIVATE //建立一个写入时拷贝的私有映射。内存区域的写入不会影响到原文件。这个标志和以上标志是互斥的,只能使用其中一个。

MAP_DENYWRITE //这个标志被忽略。

MAP_EXECUTABLE //同上

MAP_NORESERVE //不要为这个映射保留交换空间。当交换空间被保留,对映射区修改的可能会得到保证。当交换空间不被保留,同时内存不足,对映射区的修改会引起段违例信号。

MAP_LOCKED //锁定映射区的页面,从而防止页面被交换出内存。

MAP_GROWSDOWN //用于堆栈,告诉内核VM系统,映射区可以向下扩展。

MAP_ANONYMOUS //匿名映射,映射区不与任何文件关联。

MAP_ANON //MAP_ANONYMOUS的别称,不再被使用。

MAP_FILE //兼容标志,被忽略。

MAP_32BIT //将映射区放在进程地址空间的低2GB,MAP_FIXED指定时会被忽略。当前这个标志只在x86-64平台上得到支持。

MAP_POPULATE //为文件映射通过预读的方式准备好页表。随后对映射区的访问不会被页违例阻塞。

MAP_NONBLOCK //仅和MAP_POPULATE一起使用时才有意义。不执行预读,只为已存在于内存中的页面建立页表入口。

fd:有效的文件描述词。如果MAP_ANONYMOUS被设定,为了兼容问题,其值应为-1。

offset:被映射对象内容的起点。

代码实例如下:

linux mmap 底层原理_第1张图片

简单mmap的驱动代码和call trace如下,系统会为mmap系统调用申请一段虚拟空间提供给driver,调用remap_pfn_range将这段user虚拟地址空间的映射到kernel虚拟地址空间对应的物理地址空间,user跟driver操作的就是同一段物理地址空间,经过这种map之后,就会减少一些copy 数据带来的开销,系统调用在mmap.c  SYSCALL_DEFINE6(mmap_pgoff,……)

mmap_region 会为mmap准备一段vma,len 也会在call trace中被设置为PAGE_ALIGN

unsigned long mmap_region(struct file *file, unsigned long addr,
		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
{
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma, *prev;

	/*
	 * Can we just expand an old mapping?
	 */
	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
	if (vma)
		goto out;
	/*
	 * Determine the object being mapped and call the appropriate
	 * specific mapper. the address has already been validated, but
	 * not unmapped, but the maps are removed from the list.
	 */
	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);

	vma->vm_mm = mm;
	vma->vm_start = addr;
	vma->vm_end = addr + len;
	vma->vm_flags = vm_flags;
	vma->vm_page_prot = vm_get_page_prot(vm_flags);
	vma->vm_pgoff = pgoff;
	INIT_LIST_HEAD(&vma->anon_vma_chain);

	if (file) {

		/* ->mmap() can change vma->vm_file, but must guarantee that
		 * vma_link() below can deny write-access if VM_DENYWRITE is set
		 * and map writably if VM_SHARED is set. This usually means the
		 * new file must not have been exposed to user-space, yet.
		 */
		vma->vm_file = get_file(file);
		error = file->f_op->mmap(file, vma);
		
	}
}

linux mmap 底层原理_第2张图片

driver中将user space的地址映射到kernel space的虚拟地址对应的物理地址是通过函数remap_pfn_range,这个函数实际做的事情就是修改页表,通过show_pte函数来展示下mmap后该task的页表跟kernel space的地址页表映射

顺便列下二级页表的查表的理论原理方便对如上的各个地址的理解,该 task pgtable[0x76f] = 0x7e70f831 , 0x7e70f000就是对应的ptetable对应的位置,ptetable[0x95] = 0x7e56730f, 所以物理地址就是0x7e567000也就是对应kernel的0x9e567000的物理地址,可见pte和pud,pmd table在内存中的地址都是固定字节对齐的

linux mmap 底层原理_第3张图片

 

你可能感兴趣的:(ARM,LINUX)