close all;clearvars;clc;
dbstop if error;
fid = fopen('tempiqa1.dat' , 'w+');
%% 模拟目标运动轨迹以及天线的基本参数
Pt = 10e-3; %发送信号功率w
Gt = 10; %天线增益 db
RCS =1.5; %取汽车的典型值,反射物的横截面积 平方米
ADCsamplef1 = 2e6; %ADC采样率,主要是由于其中存在等待,为了保证时长的准确,此处chirp时长为8us ; 其中3us采样,5us等待
Framet = 50e-3; %扫频间隔为50ms
c = 3E8;
lambda = 3E8/77E9;
Aeff = lambda/2 * 0.04; %接受天线的有效面积m^2
numRxAnnate = 4; %接收天线个数
d = lambda/2;
DistanceOfEachAnnate = [0 d 2*d 3*d]; %接收天线间距,以第一幅接收天线为0,以后每一段为两幅接收天线之间的间距;
% sction1 距离精度高,速度精度低段
SampleRsec1 = 16;
SampleVsec1 = 1024;
Bandsec1 = 20E6;
T1 = 1/ADCsamplef1*(SampleRsec1);
U1 = Bandsec1/T1;
DR1 = c/ 2 / Bandsec1;
DV1 = lambda/ 2 / T1 / SampleVsec1;
t1 = [0:SampleRsec1-1]/ADCsamplef1;
F1 = zeros(SampleVsec1,SampleRsec1);
% sction2 距离精度高,速度精度低段
ADCsamplef2 = 5.4e6; %ADC采样率,主要是由于其中存在等待,为了保证时长的准确,此处chirp时长为47us ; 其中42us采样,5us等待
SampleRsec2 = 256;
SampleVsec2 = 128;
Bandsec2 = 800e6;
T2 = 1/ADCsamplef2*(SampleRsec2);
U2 = Bandsec2/T2;
DR2 = c/ 2 / Bandsec2;
DV2 = lambda/ 2 / T2 / SampleVsec2;
t2 = [0:SampleRsec2-1]/ADCsamplef2;
F2 = zeros(SampleVsec2,SampleRsec2);
% 目标回波信号
Frame = 300; %至少要大于目标的帧数
TargetNumber = 3; %回波目标个数
TargerFrameOrignalMatrix = [Frame Frame Frame]; %如果目标出现帧数帧数超出,则目标被删除
TargerRangeOrignalMatrix = [25 5 13]; %m 距离
TargerVolectyOrignalMatrix = [10 12 18]; %m/s 速度为正表示远离 , 速度为负表示靠近
TargerAccelerationOrignalMatrix = [0 1 5]; %m/s ^2
TargerRoadOrignalMatrix = [2 0 0]; %默认设定目标为直线运动,此处给出目标的车道位置,目标的角度信息由距离关系自动计算。其中0表示中间车道,左边为负右边为正
Mode = 0;
%% 信号模拟
%目标信号建模
Fk = [1 Framet;0 1];
Bk = [(Framet^2)/2 Framet]';
% 峰值点结构体定义
peakout.point_r = 0;peakout.point_v = 0;peakout.I1 = 0;peakout.Q1 = 0;
peakout.I2 = 0;peakout.Q2 = 0;peakout.I3 = 0;peakout.Q3 = 0;peakout.I4 = 0;peakout.Q4 = 0;
peaknum = 3072;
for i = 1 : TargetNumber %目标个数循环
Targetdeta = zeros(2 ,Frame );
Targetdeta(:,1) = [TargerRangeOrignalMatrix(i) TargerVolectyOrignalMatrix(i)]';
for j = 2 : TargerFrameOrignalMatrix(i) %目标帧数循环
Targetdeta(1:2,j) = Fk*Targetdeta(1:2,j-1) + Bk.*TargerAccelerationOrignalMatrix(i);
Targetdeta(3,j) = asind(3.6*TargerRoadOrignalMatrix(i) / Targetdeta(1 , j));
if (Targetdeta(1 , j) < 0)
Targetdeta(1 , j) = 0;
Targetdeta(2 , j) = 0;
end
end
Target(i).target = Targetdeta();
Target(i).Pr = Pt*Gt./(4*pi.*Target(i).target(1,:).^2) .* RCS .* (1/4/pi./Target(i).target(1,:).^2.*Aeff);
Target(i).sn = 1.3806505e-24 * 800e6 * (32+(9/5)*25);
end
figure;
for i = 1 : TargetNumber
plot(Target(i).target(1,:).*sind(Target(i).target(3,:)) , Target(i).target(1,:) , '*');
hold on;
end
% 模拟回波时域信号
h1 = figure;
h2 = figure;
h3 = figure;
for cnt = 1 : Frame
set(0,'CurrentFigure' , h3);
for i = 1 : TargetNumber
plot(cnt , Target(i).target(1,cnt) , 'o');
hold on;
xlabel('帧数');
ylabel('距离');
end
if(mod(cnt,2) == 0)
Mode = 1; %表示srsect1段 16*1024 20Mhz
% 初始化天线存储内存
for annatacnt = 1 : numRxAnnate
srsec1(annatacnt).RX = zeros( SampleVsec1 , SampleRsec1);
end
for k = 1 :TargetNumber
for anrxcnt = 1 : numRxAnnate
dphi(anrxcnt) = 2*pi*DistanceOfEachAnnate(anrxcnt)*sind(Target(k).target(3,cnt)) / lambda;
end
%sec1 段回波数据模拟
for i=1:SampleVsec1
for j=1:SampleRsec1
R = Target(k).target(1,cnt) +Target(k).target(2,cnt)*(i-1)*T1 + Target(k).target(2,cnt)*t1(j);
f = 2*R/lambda + 2*U1*R*t1(j)/c;
w = 2*pi*f;
F1(i,j) = w + (rand(1)-0.5)/0.1/180*pi;
end
end
for i=1:SampleVsec1
for j=1:SampleRsec1
w = F1(i,j);
for anncnt = 1 : numRxAnnate
srsec1(anncnt).RX(i,j) = srsec1(anncnt).RX(i,j) +sqrt( Target(k).Pr(cnt))* exp(sqrt(-1)*(w + dphi(anncnt))) + (rand(1) - 0.5)* sqrt( Target(k).sn);% * %dphi(anncnt)
end
end
end
end
srsecrx1 = srsec1(1).RX';
srsecrx2 = srsec1(2).RX';
srsecrx3 = srsec1(3).RX';
srsecrx4 = srsec1(4).RX';
black_manR = blackman(SampleRsec1);
black_manV = blackman(SampleVsec1)';
SR1 = srsecrx1.*repmat(black_manR,1,SampleVsec1);
SR1 = SR1.*repmat(black_manV,SampleRsec1,1);
fft_data1_1d = fft(SR1,SampleRsec1);
fft_data1_1d = fft_data1_1d';
fft_data1_2d = fft(fft_data1_1d,SampleVsec1);
abs_data1 = abs(fft_data1_2d);
%
SR2 = srsecrx2.*repmat(black_manR,1,SampleVsec1);
SR2 = SR2.*repmat(black_manV,SampleRsec1,1);
fft_data2_1d = fft(SR2,SampleRsec2);
fft_data2_1d = fft_data2_1d';
fft_data2_2d = fft(fft_data2_1d,SampleVsec1);
abs_data2 = abs(fft_data2_2d);
%
SR3 = srsecrx3.*repmat(black_manR,1,SampleVsec1);
SR3 = SR3.*repmat(black_manV,SampleRsec1,1);
fft_data3_1d = fft(SR3,SampleRsec1);
fft_data3_1d = fft_data3_1d';
fft_data3_2d = fft(fft_data3_1d,SampleVsec1);
abs_data3 = abs(fft_data3_2d);
%
SR4 = srsecrx4.*repmat(black_manR,1,SampleVsec1);
SR4 = SR4.*repmat(black_manV,SampleRsec1,1);
fft_data4_1d = fft(SR4,SampleRsec1);
fft_data4_1d = fft_data4_1d';
fft_data4_2d = fft(fft_data4_1d,SampleVsec1);
abs_data4 = abs(fft_data4_2d);
set(0,'CurrentFigure' , h1);
mesh(abs_data1);
title( strcat('一维20Mhz 16点 ; dr = ' , num2str(DR1) ,'m ; 二维1024点; dv = ' , num2str(DV1) , 'm/s'));
xlabel('距离维');
ylabel('速度维');
else
Mode = 2; %表示srsect1段 256*128 800Mhz
% 初始化天线存储内存
for annatacnt = 1 : numRxAnnate
srsec2(annatacnt).RX = zeros( SampleVsec2 , SampleRsec2);
end
%sec2 段回波数据模拟
for k = 1 :TargetNumber
for anrxcnt = 1 : numRxAnnate
dphi(anrxcnt) = 2*pi*DistanceOfEachAnnate(anrxcnt)*sind(Target(k).target(3,cnt)) / lambda;
end
%sec2 段回波数据模拟
for i=1:SampleVsec2
for j=1:SampleRsec2
R = Target(k).target(1,cnt) +Target(k).target(2,cnt)*(i-1)*T2 + Target(k).target(2,cnt)*t2(j);
f = 2*R/lambda + 2*U2*R*t2(j)/c;
w = 2*pi*f;
F2(i,j) = w + (rand(1)-0.5)/0.1/180*pi;
end
end
for i=1:SampleVsec2
for j=1:SampleRsec2
w = F2(i,j);
for anncnt = 1 : numRxAnnate
srsec2(anncnt).RX(i,j) = srsec2(anncnt).RX(i,j) + sqrt( Target(k).Pr(cnt)) * exp(sqrt(-1)*(w + dphi(anncnt)))+ (rand(1) - 0.5)* sqrt( Target(k).sn);
end
end
end
end
srsecrx1 = srsec2(1).RX';
srsecrx2 = srsec2(2).RX';
srsecrx3 = srsec2(3).RX';
srsecrx4 = srsec2(4).RX';
black_manR = blackman(SampleRsec2);
black_manV = blackman(SampleVsec2)';
SR1 = srsecrx1.*repmat(black_manR,1,SampleVsec2);
SR1 = SR1.*repmat(black_manV,SampleRsec2,1);
fft_data1_1d = fft(SR1,SampleRsec2);
fft_data1_1d = fft_data1_1d';
fft_data1_2d = fft(fft_data1_1d,SampleVsec2);
abs_data1 = abs(fft_data1_2d);
%
SR2 = srsecrx2.*repmat(black_manR,1,SampleVsec2);
SR2 = SR2.*repmat(black_manV,SampleRsec2,1);
fft_data2_1d = fft(SR2,SampleRsec2);
fft_data2_1d = fft_data2_1d';
fft_data2_2d = fft(fft_data2_1d,SampleVsec2);
abs_data2 = abs(fft_data2_2d);
%
SR3 = srsecrx3.*repmat(black_manR,1,SampleVsec2);
SR3 = SR3.*repmat(black_manV,SampleRsec2,1);
fft_data3_1d = fft(SR3,SampleRsec2);
fft_data3_1d = fft_data3_1d';
fft_data3_2d = fft(fft_data3_1d,SampleVsec2);
abs_data3 = abs(fft_data3_2d);
%
SR4 = srsecrx4.*repmat(black_manR,1,SampleVsec2);
SR4 = SR4.*repmat(black_manV,SampleRsec2,1);
fft_data4_1d = fft(SR4,SampleRsec2);
fft_data4_1d = fft_data4_1d';
fft_data4_2d = fft(fft_data4_1d,SampleVsec2);
abs_data4 = abs(fft_data4_2d);
set(0,'CurrentFigure' , h2);
mesh(abs_data1);
title( strcat('一维800Mhz 256点 ; dr = ' , num2str(DR2) ,'m ; 二维128点; dv = ' , num2str(DV2) , 'm/s'));
xlabel('距离维');
ylabel('速度维');
end
%% 找峰值点,并把峰值点传出来
avemeans = mean(abs_data1)*1.5;
avemeans = repmat(avemeans , size(abs_data1 , 1) , 1);
peak_matrix = imregionalmax(abs_data1);
peak_matrix = peak_matrix .* abs_data1;
peak_matrix(peak_matrix < avemeans) = 0;
peak_matrix = peak_matrix * 1e6;
g_menxian = avemeans(1,:)*1e6;
[point_r point_v]= find(peak_matrix > 0);
len = length(point_r);
if len > 3072
len = 3072;
end
for peakcnt = 1 : 3072
peakout(peakcnt).point_r = 0; peakout(peakcnt).point_v=0;
peakout(peakcnt).I1 = 0;peakout(peakcnt).Q1 = 0;
peakout(peakcnt).I2 = 0; peakout(peakcnt).Q2 = 0;
peakout(peakcnt).I3 = 0; peakout(peakcnt).Q3 = 0;
peakout(peakcnt).I4 = 0; peakout(peakcnt).Q4 = 0;
end
%peak_matrix为峰值点位置 ; g_menxian为门限值,之后组帧数据传输出去
for peakcnt = 1 : length(point_r)
peakout(peakcnt).point_r = point_r(peakcnt);
peakout(peakcnt).point_v = point_v(peakcnt);
peakout(peakcnt).I1 = real(fft_data1_2d( point_r(peakcnt) , point_v(peakcnt))) * 1e6;
peakout(peakcnt).Q1 = imag(fft_data1_2d( point_r(peakcnt) , point_v(peakcnt))) * 1e6;
peakout(peakcnt).I2 = real(fft_data2_2d( point_r(peakcnt) , point_v(peakcnt))) * 1e6;
peakout(peakcnt).Q2 = imag(fft_data2_2d( point_r(peakcnt) , point_v(peakcnt))) * 1e6;
peakout(peakcnt).I3 = real(fft_data3_2d( point_r(peakcnt) , point_v(peakcnt))) * 1e6;
peakout(peakcnt).Q3 = imag(fft_data3_2d( point_r(peakcnt) , point_v(peakcnt))) * 1e6;
peakout(peakcnt).I4 = real(fft_data4_2d( point_r(peakcnt) , point_v(peakcnt))) * 1e6;
peakout(peakcnt).Q4 = imag(fft_data4_2d( point_r(peakcnt) , point_v(peakcnt))) * 1e6;
end
for peakcnt = 1 : 3072
fwrite(fid, peakout(peakcnt).point_r , 'uint16');
fwrite(fid, peakout(peakcnt).point_v , 'uint16');
fwrite(fid, int16(peakout(peakcnt).I1) , 'int16');
fwrite(fid, int16(peakout(peakcnt).Q1) , 'int16');
fwrite(fid, int16(peakout(peakcnt).I2) , 'int16');
fwrite(fid, int16(peakout(peakcnt).Q2) , 'int16');
fwrite(fid, int16(peakout(peakcnt).I3) , 'int16');
fwrite(fid, int16(peakout(peakcnt).Q3) , 'int16');
fwrite(fid, int16(peakout(peakcnt).I4) , 'int16');
fwrite(fid, int16(peakout(peakcnt).Q4) , 'int16');
end
pause(0.01);
end
fclose(fid);