YARN产生背景
a)JobTracker单点故障
b)JobTracker承受的访问压力大,影响系统的扩展性
c)不支持MapReduce之外的计算框架,比如storm、spark、flink
什么是YARN
YARN是Hadoop2.0版本引进的资源管理系统,直接从MR1演化而来。
核心思想:将MR1中的JobTracker的资源管理和作业调度两个功能分开,分别由ResourceManager和ApplicationMaster进程实现。
ResourceManager:负责整个集群的资源管理和调度
ApplicationMaster:负责应用程序相关事务,比如任务调度、任务监控和容错等。
YARN的出现,使得多个计算框架可以运行在同一个集群之中。
1. 每一个应用程序对应一个ApplicationMaster。
2. 目前可以支持多种计算框架运行在YARN上面,比如MapReduce、storm、Spark、Flink。
YARN的基本架构
从YARN的架构来看,它主要由ResourceManager、 NodeManager、ApplicationMaster 和 Container组成
ResourceManager(RM)
RM是一个全局的资源管理器,负责整个系统的 资源管理和分配。它主要由两个组件构成:调度器(Schedule)和应用程序管理器(Application Manager, ASM)
YARN分层结构的本质是ResourceManager。这个实体控制整个集群并管理应用程序向基础计算资源的分配。ResourceManager将各个资源部分(计算、内存、带宽等)精心安排给基础NodeManager(YARN的每节点代理)。ResourceManager还与ApplicationMaster一起分配资源,与NodeManager一起启动和监视它们的基础应用程序。在此上下文中,ApplicationMaster承担了以前的TaskTracker的一些角色,ResourceManager承担了JobTracker的角色。
a)调度器(Schedule)
调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量的作业等),将系统中的资源分配给各个正在运行的应用程序。该调度器是一个“纯调度器”,它不再从事任何与具体应用程序相关的工作。
b)应用程序管理器(Application Manager)
应用程序管理器负责管理整个系统中所有的应用程序,包括应用程序提交、调度协调资源以启动ApplicationMaster、监控ApplicationMaster运行状态并在失败时重新启动它。
ApplicationMaster(AM)
ApplicationMaster管理一个在YARN内运行的应用程序的每个实例。ApplicationMaster负责协调来自ResourceManager的资源,并通过NodeManager监视容器的执行和资源的使用(cpu、内存等资源分配)。
请注意,尽管目前的资源更加传统(CPU核心、内存),但未来会带来基于手头任务的新资源类型(比如图形处理单元,或专用处理设备)。从YARN角度来讲,ApplicationMaster是用户代码因此存在潜在安全问题。YARN假设ApplicationMaster存在错误或者甚至是恶意的,因此将它们当做无特权的代码对待。
NodeManager(NM)
NodeManager管理一个YARN集群中的每个节点。NodeManager提供针对集群中每个节点的服务,从监督对一个容器的终身管理到监视资源和跟踪节点健康。MRv1通过插槽管理Map和Reduce任务执行,而NodeManager管理抽象容器,这些容器代表着可供一个特定应用程序使用的针对每个节点的资源。YARN继续使用HDFS层。它的主要NameNode主要用于元数据服务,而DataNode用于分散在一个集群中的复制存储服务。
NM是每个节点上的资源和任务管理器。一方面,它会定时地向RM汇报本节点上的资源使用情况和各个Container运行状态;另一方面,它接收并处理来自AM的 Container 启动/停止等各种请求。
Container
Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存,CPU,磁盘,网络等。当AM向RM申请资源时,RM为AM返回的资源便是用Container表示的。
YARN会为每个任务分配一个Container,且该任务只能用该Container中描述的资源。
要使用一个YARN集群,首先需要来自包含一个应用程序的客户请求。
ResourceManager协商一个容器的必要资源,启动一个ApplicationMaster来表示已经提交的应用程序。通过使用一个资源请求协议,ApplicationMaster协商每个节点上供应程序使用的资源容器。执行应用程序时,ApplicationMaster监视容器,直到完成。当应用程序完成时,ApplicationMaster从ResourceManager注销其容器,执行周期就完成了。
通过以上的描述,应该明确的一点是,旧的Hadoop架构收到了JobTracker的高度约束,JobTracker负责整个集群的资源管理和作业调度。新的YARN架构打破了这种模型,允许一个新ResourceManager管理跨应用程序的资源使用,ApplicationMaster负责管理作业的执行。这一更改消除了这一瓶颈,还改善了Hadoop集群的扩展能力,使其扩展能力比以前大得多。此外,不同于传统的MapReduce,YARN允许使用Message Passing Interface 等标准通信模式,同时执行各种不同的编程模型,包括图形计算、迭代式处理、机器学习和一般集群计算。
YARN的工作原理
MapReduce On YARN
MapReduce On YARN
a)YARN负责资源管理和调度
b)ApplicationMaster负责任务管理
MapReduce ApplicationMaster
a)MRAppMaster
b)每个MapReduce作业启动一个MRAppMaster
c)MRAPPMaster负责任务切分、任务调度、任务监控、容错等
MRAPPMater任务调度
a)YARN将资源分配给MR APPMaster
b)MRAPPMaster进一步将资源分配给内部任务
MRAPPMaster容错
a)MRAPPMaster运行失败后,由YARN重新启动
b)任务运行失败后,MRAPPMaster重新申请资源
YARN HA
ResourceManager HA 由一对 Active,Standby节点构成,通过RMStataStore存储内部数据和主要应用的数据及标记。
目前支持的可替代的 RMStateStore实现有:基于内存的 MemoryRMStateStore,基于文件系统的FileSystemRMStateStore,及基于Zookeeper的ZKRMStateStore。
ResourceManager HA的架构模式同NameNode HA的架构模式基本一致,数据共享由RMStateStore,而ZKFC称为ResourceManager进程的一个服务,非独立存在。