上一篇帖子:ubuntu16.04使用Anaconda3安装Tensorflow
本篇,按照Google TensorFlow 教程实现Basic Classification Demo.原文链接:
https://www.tensorflow.org/tutorials/keras/basic_classification#Preprocess%20the%20data
1.查看env环境列表
conda env list
2.切换到venv虚拟环境(venv是在上一篇帖子中创建的带tensorflow pip包的环境)
source activate venv
3.创建py文件(我这里命名为basic_classification.py)
touch basic_classification.py
4.编写代码,Basic Classification Demo主要分为五打步骤,分别是:导入数据集、预处理数据、构建模型、训练模型、评估准确性、作出预测。
#load train and test dataset
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
#preprocess data
train_images, test_images = train_images / 255.0, test_images / 255.0
#setup the layers
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
#compile the model
model.compile(optimizer=tf.train.AdamOptimizer(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
#train the model
model.fit(train_images, train_labels, epochs=5)
#evalute accuracy
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
# make predictions
predictions = model.predict(test_images)
Demo 完整代码:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
def plot_image(i, predictions_array, true_label, img):
predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100*np.max(predictions_array),
class_names[true_label]),
color=color)
def plot_value_array(i, predictions_array, true_label):
predictions_array, true_label = predictions_array[i], true_label[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')
#load train and test dataset
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
#preprocess data
train_images, test_images = train_images / 255.0, test_images / 255.0
#setup the layers
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
#compile the model
model.compile(optimizer=tf.train.AdamOptimizer(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
#train the model
model.fit(train_images, train_labels, epochs=5)
#evaluate accuracy
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
#make predictions
predictions = model.predict(test_images)
#show predictions
num_rows, num_cols = 5, 3
num_images = num_rows * num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
plt.subplot(num_rows,2*num_cols,2*i+1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(num_rows,2*num_cols,2*i+2)
plot_value_array(i, predictions, test_labels)
if(num_images - i <= 3):
_ = plt.xticks(range(10), class_names, rotation=90)
plt.show()
运行结果: