ASR自动语音识别技术

自动语音识别技术(Automatic Speech Recognition)是一种将人的语音转换为文本的技术。语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。语音识别系统的性能大致取决于以下4类因素:1. 识别词汇表的大小和语音的复杂性;2. 语音信号的质量;3. 单个说话人还是多说话人;4. 硬件。

自动语音识别(Automatic Speech Recognition 简称“ASR“)技术的目标是让计算机能够“听写”出不同人所说出的连续语音,也就是俗称的“语音听写机”,是实现“声音”到“文字”转换的技术。 自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。
语音识别是研究如何采用 数字信号处理技术自动提取以及决定语音信号中最基本、最有意义的信息的一门新兴的边缘学科。它是语音信号处理学科的一个分支。
语音识别系统的性能大致取决于以下4类因素:1. 识别词汇表的大小和语音的复杂性;2. 语音信号的质量;3. 单个说话人还是多说话人;4. 硬件。

分类

自动语音识别通常有以下几种分类方法:
(1)按系统的用户情况分:特定人和非特定人识别系统;
(2)按系统词汇量分:小词汇量、中词汇量和大词汇量系统;
(3)按语音的输入方式分:孤立词、连接词、连续语音系统等;
(4)按输入语音的发音方式分:朗读式、口语(自然发音)式;
(5)按输入语音的方言背景情况分:普通话、方言背景普通话、方言语音识别系统;
(6)按输入语音的情感状态分;中性语音、情感语音识别系统。

基本原理


训练(Training):预先分析出语音特征参数,制作语音模板,并存放在语音参数库中。
识别(Recognition):待识语音经过与训练时相同的分析,得到语音参数。将它与库中的参考模板一一比较,并采用判决的方法找出最接近语音特征的模板,得出识别结果。
失真测度(Distortion Measures):在进行比较时要有个标准,这就是计量语音特征参数矢量之间的“失真测度”。
主要识别框架:基于模式匹配的动态时间规整法(DTW)和基于统计模型的隐马尔可夫模型法(HMM)。


你可能感兴趣的:(音频)