- nosql数据库技术与应用知识点
皆过客,揽星河
NoSQLnosql数据库大数据数据分析数据结构非关系型数据库
Nosql知识回顾大数据处理流程数据采集(flume、爬虫、传感器)数据存储(本门课程NoSQL所处的阶段)Hdfs、MongoDB、HBase等数据清洗(入仓)Hive等数据处理、分析(Spark、Flink等)数据可视化数据挖掘、机器学习应用(Python、SparkMLlib等)大数据时代存储的挑战(三高)高并发(同一时间很多人访问)高扩展(要求随时根据需求扩展存储)高效率(要求读写速度快)
- Java基于spring boot的国产电影数据分析与可视化python+java+node.js
QQ_511008285
javaspringboot数据分析pythondjangovue.jsflask
前端开发框架:vue.js数据库mysql版本不限后端语言框架支持:1java(SSM/springboot)-idea/eclipse2.Nodejs+Vue.js-vscode3.python(flask/django)--pycharm/vscode4.php(thinkphp/laravel)-hbuilderx数据库工具:Navicat/SQLyog等都可以 该系统使用进行大数据处理和
- Java中的大数据处理框架对比分析
省赚客app开发者
java开发语言
Java中的大数据处理框架对比分析大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将深入探讨Java中常用的大数据处理框架,并对它们进行对比分析。大数据处理框架是现代数据驱动应用的核心,它们帮助企业处理和分析海量数据,以提取有价值的信息。本文将重点介绍ApacheHadoop、ApacheSpark、ApacheFlink和ApacheStorm这四种流行的
- Java 学习路线:语言、框架、中间件与数据库
高危型
java
Java是一门功能强大、应用广泛的编程语言,适用于企业级应用、Web开发、大数据处理、Android开发等各种场景。这里为大家介绍了一下我认为较为合适的学习路线一、Java基础1.1Java语言基础1.1.1安装JDK和IDE安装JDK:下载JDK:访问Oracle官网,下载最新的JavaDevelopmentKit(JDK)。安装JDK:按照操作系统要求安装JDK并配置环境变量。Windows上
- 比较Spark与Flink
傲雪凌霜,松柏长青
大数据后端sparkflink大数据
ApacheSpark和ApacheFlink都是目前非常流行的大数据处理引擎,但它们在架构、处理模式、应用场景等方面有一些显著的区别。下面是二者的对比:1.处理模式Spark:主要支持批处理(BatchProcessing),也能通过SparkStreaming处理流式数据,但SparkStreaming本质上是通过微批(micro-batching)的方式处理流数据,延迟相对较高。SparkS
- Apache Flink:实时流处理与批处理的统一框架
小码快撩
flink大数据
导语在大数据处理领域,流处理和批处理是两种主要的处理方式。然而,传统的系统通常将这两者视为独立的任务,需要不同的工具和框架来处理。ApacheFlink是一个开源的流处理框架,它打破了这种界限,提供了一个统一的平台来处理实时流数据和批处理数据。一、基本概念与架构ApacheFlink的基本概念与架构主要包括以下几个核心组成部分:基本概念1.流处理模型:无界流(UnboundedStreams):数
- starrocks和clickhouse数据库比较
CodeMaster_37714848
clickhouse数据库
Starrocks和ClickHouse都是用于数据分析的数据库,但它们的设计理念和用途有所不同。下面是这两者的一些主要比较点:1.基础架构与设计目标Starrocks:Starrocks是一个专注于实时数据分析的平台,常用于大数据处理和商业智能应用。它设计用于高效处理大规模数据集,并且支持复杂查询和数据处理。支持多种数据源的集成,并且可以与其他大数据技术(如Hadoop、Spark)协同工作。C
- 基于Java新媒体运营分析服务平台设计
什么任性
java新媒体运营springspringcloudSSM毕业设计html5
一、引言随着新媒体行业的迅猛发展,内容创作、用户互动、广告投放等数据的分析变得至关重要。一个基于Java的新媒体运营分析服务平台,旨在整合多源数据,通过大数据处理和分析技术,为新媒体运营团队提供全面、实时的运营洞察。本平台设计旨在提高决策效率,优化内容策略,增强用户参与度,并最终提升品牌影响力和变现能力。二、技术栈和框架后端开发:SpringBoot(微服务架构)、SpringDataJPA(数据
- Hive的优势与使用场景
傲雪凌霜,松柏长青
后端大数据hivehadoop数据仓库
Hive的优势Hive作为一个构建在Hadoop上的数据仓库工具,具有许多优势,特别是在处理大规模数据分析任务时。以下是Hive的主要优势:1.与Hadoop生态系统的紧密集成Hive构建在Hadoop分布式文件系统(HDFS)之上,能够处理海量数据并进行分布式计算。它利用Hadoop的MapReduce或Spark来执行查询,具备高度扩展性,适合大数据处理。2.支持SQL-like查询语言(Hi
- 前端数据埋点
小童不学前端
前端大数据
前端埋点文章目录前言一、什么是埋点二、为什么采用埋点三、前端埋点方案3.1、手动埋点3.2、可视化埋点3.3、无埋点四、埋点方式前言最近看到一个很有意思的前端数据收集:前端数据埋点,下面说说我的观点一、什么是埋点埋点,是数据采集领域,简单来说就是行为数据收集二、为什么采用埋点数据生产->数据收集->数据处理->数据分析->数据驱动/用户反馈->产品优化/迭代通过大数据处理,数据统计,数据挖掘等加工
- 【大数据Big DATA】大数据解决方案,提供完整的大数据采集,大数据存储,大数据处理,具体业务应用解决方案
_晓夏_
JAVA大数据大数据解决方案大数据BIGDATA大数据采集大数据存储大数据处理大数据分析
大数据解决方案是指利用大数据技术,结合企业实际业务需求,为企业提供数据采集、存储、处理、分析和报告等一站式服务,以帮助企业更好地利用大数据提高运营效率、优化决策制定。以下是一些常见的大数据解决方案:一、数据采集数据采集是大数据解决方案的起点,涉及从各种数据源中抓取和收集数据。常见的大数据采集工具包括Flume、Scribd等,这些工具可以帮助企业快速、高效地采集各类数据。二、数据存储大数据存储解决
- Python Pandas大数据处理
艾杰Hydra
Pythonpandaspython数据分析
pandas处理过大数据时间太长或者没有响应可以使用chunksize将数据分段处理并拼接importpandasaspddf=pd.DataFrame()forchunkinpd.read_csv('test.csv',usecold=[0,1],names=['times','data'],chunksize=2000000):df=df.append(chunk)chunksize尽量不要超
- 【Spark高级应用】使用Spark进行高级数据处理与分析
爱技术的小伙子
大数据sparkajax大数据
Spark高级应用使用Spark进行高级数据处理与分析引言在大数据时代,快速处理和分析海量数据是每个企业面临的重大挑战。ApacheSpark作为一种高效的分布式计算框架,凭借其高速、易用、通用和灵活的特点,已经成为大数据处理和分析的首选工具。本文将深入探讨如何使用Spark进行高级数据处理与分析,通过实际案例和代码示例,帮助你掌握Spark的高级应用技巧。提出问题如何进行高效的大规模数据处理?如
- Spark一些个人总结
易逑实战数据
大数据sparkbigdatascala
文章目录前言一、Spark是什么二、Spark用来做什么三、Spark的优势是什么四、为什么用Spark五、Spark解决了什么问题总结前言随着大数据技术的发展,一些更加优秀的组件被提了出来,比如现在最常用的Spark组件,基于RDD原理在大数据处理中占据了越来越重要的作用。在此我们探索了Spark的原理,以及其在大数据开发中的重要作用。一、Spark是什么Spark是一个用来实现快速,通用的集群
- Hadoop组件
静听山水
Hadoophadoop
这张图片展示了Hadoop生态系统的一些主要组件。Hadoop是一个开源的大数据处理框架,由Apache基金会维护。以下是每个组件的简短介绍:HBase:一个分布式、面向列的NoSQL数据库,基于GoogleBigTable的设计理念构建。HBase提供了实时读写访问大量结构化和半结构化数据的能力,非常适合大规模数据存储。Pig:一种高级数据流语言和执行引擎,用于编写MapReduce任务。Pig
- Windows系统下的Spark环境配置
eeee~~
3:大数据技术实用教程spark大数据分布式
一:Spark的介绍ApacheSpark是一个开源的分布式大数据处理引擎,它提供了一整套开发API,包括流计算和机器学习。Spark支持批处理和流处理,其显著特点是能够在内存中进行迭代计算,从而加快数据处理速度。尽管Spark是用Scala开发的,但它也为Java、Scala、Python和R等高级编程语言提供了开发接口。Spark提供了多个核心组件,包括:SparkCore:提供内存计算的能力
- EMR组件部署指南
ivwdcwso
运维EMR大数据开源运维
EMR(ElasticMapReduce)是一个大数据处理和分析平台,包含了多个开源组件。本文将详细介绍如何部署EMR的主要组件,包括:JDK1.8ElasticsearchKafkaFlinkZookeeperHBaseHadoopPhoenixScalaSparkHive准备工作所有操作都在/data目录下进行。首先安装JDK1.8:yuminstalljava-1.8.0-openjdk部署
- Sublime text3+python3配置及插件安装
raysonfang
作者:方雷个人博客:http://blog.chargingbunk.cn/微信公众号:rayson_666(Rayson开发分享)个人专研技术方向:微服务方向:springboot,springCloud,Dubbo分布式/高并发:分布式锁,消息队列RabbitMQ大数据处理:Hadoop,spark,HBase等python方向:pythonweb开发一,前言在网上搜索了一些Python开发的
- 高校为什么需要AIGC大数据实验室?
泰迪智能科技01
AIGCAIGC大数据
AIGC大数据实验室是一个专注于人工智能生成内容(AIGC)和大数据相关技术研究、开发与应用的创新实验平台。AIGC主要研究方向包括:AIGC技术创新、大数据处理与分析、AIGC与大数据融合应用。AIGC技术创新:探索如何利用人工智能算法,如深度学习中的生成对抗网络(GAN)、变分自编码器(VAE)、基于Transformer架构的语言模型(如GPT系列)等,来高效地生成高质量的文本、图像、音频、
- Java整体基础知识体系图
神州永泰
java编程语言大数据javaspringmysql
一java介绍Java是一种高级编程语言,由SunMicrosystems公司于1995年推出。Java具有跨平台性、面向对象、健壮性、安全性、可移植性等特点,被广泛应用于企业级应用开发、移动应用开发、大数据处理、云计算等领域。Java程序可以在不同的操作系统上运行,只需编译一次,就可以在任何支持Java虚拟机(JVM)的平台上运行,这得益于Java的“一次编写,随处运行”的特性。Java是面
- php案例分析百度云_基于阿里云平台的大数据教学案例 —— B站弹幕数据分析
weixin_39892311
php案例分析百度云
简介:实验基于所学的大数据处理知识,结合阿里云大数据相关产品,分组完成一个大数据分析项目,数据集可以使用开源数据集或自行爬取,最终完成一个完整的实验报告:1、能够使用阿里云大数据相关产品完成数据分析、数据建模与模型优化2、能够基于分析结构构建可视化门户或可视化大屏,分析和呈现不少于5个3、分析案例有实用价值并能够形成有效结论4、能够将开源技术与阿里云产品结合,综合利用提升开发效率,降低成本5、能够
- Elasticsearch 压测方案之 esrally 简介
叫小七的剑客
由于Elasticsearch(后文简称es)的简单易用及其在大数据处理方面的良好性能,越来越多的公司选用es作为自己的业务解决方案。然而在引入新的解决方案前,不免要做一番调研和测试,本文便是介绍官方的一个es压测工具esrally,希望能为大家带来帮助。为什么要压测?关于压测,我们先来看下百度百科上的一个定义。压测,即压力测试,是确立系统稳定性的一种测试方法,通常在系统正常运作范围之外进行,以考
- 面试笔记8.24
励志秃头码代码
面试职场和发展
项目你的项目中涉及大数据开发,那你的代码工程是怎么搭建的?正确答案:在我的项目中涉及大数据开发时,我通常会采用分布式的架构,比如使用Hadoop或者Spark等大数据处理框架。我会在集群中部署多台服务器,通过分布式计算和存储来处理大规模数据。解答思路:首先,我会搭建一个Hadoop或Spark集群,确保集群中的每台服务器都能正常通信。然后,我会编写MapReduce或Spark作业来处理数据,将数
- 使用go语言高效解析json详解(含多个json库的对比)
memories198
jsongolang开发语言后端运维
在Go语言中,解析JSON性能的优劣取决于所使用的库。以下是对比encoding/json、jsoniter、go-json和gjson的性能分析和推荐:1.encoding/json(标准库)简介encoding/json是Go语言的标准库,易用性高且内置于Go语言中。然而,由于依赖于反射机制,它在高并发和大数据处理时性能较低。对于基本的应用场景,encoding/json完全够用,但在追求高性
- java后端都要学那些知识
程序员牛马家
有关计算机就业的自我观点java
java后端应该学习那些知识一、引言Java后端的重要性:介绍Java作为后端开发语言的广泛应用,包括企业级应用、大数据处理、云计算等领域。学习Java后端的意义:阐述掌握Java后端开发技能对于职业发展的重要性,以及它如何帮助解决实际问题。二、Java基础数据类型与变量:介绍Java的基本数据类型、变量声明与初始化。控制结构:详细讲解if-else、switch、for、while等控制语句的用
- Hadoop的概念
子非鱼
hadoop大数据分布式
1.什么是大数据数据体量巨大:数据量规模庞大,通常以PB(拍字节)或EB(艾字节)来衡量,远远超出了传统数据库和数据处理工具的处理能力。数据类型多样:大数据包括结构化数据、半结构化数据和非结构化数据。其中,非结构化数据占据了相当大的比例,如文本、音频、视频、图片、地理位置信息等。价值密度低:在大量的数据中,真正有价值的信息可能只是很小的一部分。因此,如何从海量数据中快速提取有价值的信息是大数据处理
- MAP REDUCE
Xiao_die888
大数据分析与应用mapreduce
大数据处理框架概念定义:由一系列组件构成,负责对数据系统中的数据进行计算。组件:处理引擎:实际执行数据操作的独立组件。处理框架:包含多个协同工作的组件。框架与引擎的区别引擎:单一的,专门执行任务。框架:由多个引擎和辅助组件组成,提供更广泛的功能。框架示例ApacheHadoop:以MapReduce作为默认处理引擎的框架。ApacheSpark:可以整合进Hadoop,取代MapReduce的框架
- 服务器扩容时该如何选择合适大小的CPU和内存?
Jtti
数据库运维
服务器扩容时,CPU和内存的搭配是一个重要的考虑因素,因为它直接影响到服务器的性能和资源利用率。以下是一些关于如何搭配CPU和内存大小的建议:1.确定工作负载首先,了解您的服务器将运行的应用程序类型和负载特征(如CPU密集型、内存密集型或I/O密集型)。CPU密集型:需要更多的CPU计算能力,如视频编码、大数据处理。内存密集型:需要大量的内存来存储和处理数据,如大型数据库、缓存服务器。I/O密集型
- Apache Kafka的伸缩性探究:实现高性能、弹性扩展的关键
i289292951
kafkakafka
引言ApacheKafka作为当今最流行的消息中间件之一,以其强大的伸缩性著称。在大数据处理、流处理和实时数据集成等领域,Kafka的伸缩性为其在面临急剧增长的数据流量和多样化业务需求时提供了无与伦比的扩展能力。本文将深入探讨Kafka如何通过其独特的架构设计实现高水平的伸缩性,以及在实际部署中如何优化和利用这一特性。一、Kafka伸缩性的核心设计分区(Partitioning)与水平扩展Kafk
- Spark面试整理-Spark是什么?
不务正业的猿
面试Sparkspark大数据分布式
ApacheSpark是一个开源的分布式计算系统,它提供了一个用于大规模数据处理的快速、通用、易于使用的平台。它最初是在加州大学伯克利分校的AMPLab开发的,并于2010年开源。自那时起,Spark已经成为大数据处理中最受欢迎和广泛使用的框架之一。下面是Spark的一些关键特点:速度:Spark使用了先进的DAG(有向无环图)执行引擎,可以支持循环数据流和内存计算。这使得Spark在数据处理方面
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement