2019-06-25
推荐博客阅读:https://www.sohu.com/a/271430685_100201031
一. 适合解决的问题
有n个数。m次操作,每一次操作,给定l,r,del.将l~r区间的所有数增加del;最后有q个询问,给你 l,r ,每一次询问求出l~r的区间和。
注明: 先进行m个修改操作,后进行查询操作.
涉及到的用途有
- 快速处理区间加减操作:O(1)
- 询问区间和:O(n)处理O(1)查询.
二. 算法解释
差分数组定义:记录当前位置的数与上一位置的数的差值.
我们发现差分数组的前缀和s[i]就是原数组a[i]的值
差分数组的前缀和:9 3 5 4 2
现在对原数组a进行区间操作:
我们可以发现图中对新的差分数组进行前缀和的数组(即图中的新的a数组)和对原数组a进行区间操作后的数组a一模一样
另外,可以通过图中新的前缀和数组(假设为sum) 求出 区间操作后的数组a的区间和
beforesum(a~b)=sum[b]-sum[a-1];
三.关键代码
简化版:
解释版:
#include#include<string.h> #include #include using namespace std; #define N 100005 int main() { int a[N],b[N]; int n;//数组a的长度 cout<<"请输入数组a的长度:"<<endl; cin>>n; cout<<"请输入数组a的元素:"<<endl; for(int i=1;i<=n;i++) cin>>a[i]; memset(b,0,sizeof(b)); a[0]=0;//很重要 for(int i=1;i<=n;i++)//差分数组就是原数组前后数的差值 b[i]=a[i]-a[i-1]; cout<<"差分数组:"<<endl; for(int i=1;i<=n;i++) cout<" "; cout< endl; int m;//区间修改操作的组数 cout<<"请输入需进行区间修改操作的组数:"<<endl; cin>>m; while(m--) { int l,r,x;//被区间修改的左边界与右边界 x为增加的值 cout<<"请输入需进行区间修改操作的的左边界与右边界以及要增加的值:"<<endl; cin>>l>>r>>x; b[l]+=x; b[r+1]-=x; } cout<<"区间修改操作后的差分数组:"<<endl; for(int i=1;i<=n;i++) cout<" "; cout< endl; int a1[N]; memset(a1,0,sizeof(a1)); for(int i=1;i<=N;i++) a1[i]+=a1[i-1]+b[i]; cout<<"区间修改操作后的差分数组的前缀数组(也即原数组进行区间修改后的更改数组):"<<endl; for(int i=1;i<=n;i++) cout< " "; cout< endl; int sum[N]; memset(sum,0,sizeof(sum)); for(int i=1;i<=N;i++) sum[i]=sum[i-1]+a1[i]; cout<<"修改后的数组的区间和数组"<<endl; for(int i=1;i<=n;i++) cout< " "; cout< endl; cout<<"请输入需进行区间和查询操作的组数:"<<endl; int t;//区间和查询操作的组数 cin>>t; while(t--){ int l,r; cout<<"请输入需进行区间和查询操作的左右边界:"<<endl; cin>>l>>r; cout<<"该查询区间的区间和:"< 1]<<endl; } }
样例一:
5
9 3 5 4 2
1
2 5 5
1
2 5
样例二:
5
9 3 5 4 2
1
2 4 5
1
2 4
四.例题
借教室:https://ac.nowcoder.com/acm/problem/16564
思路:该题对时间复杂度要求很高,一般的写法都会被卡
用线段树或者差分数组进行区间修改,每个区间修改操作都是O(1)
然后用二分找答案(求需求存在问题时申请人的编号)l=1,r=m
Judge()函数判断前mid个申请人是否会存在问题(前mid个申请人的需求是否不超过可供应值)
需求数组b(1~n):前mid个申请人在第i天的总需求量
memset(b,0,sizeof(b));
for(int i=1;i<=mid;i++)//mid个申请人
{
for(int j=s[i];j<=t[i];j++)//s[i]到t[i]天每天的需求 区间修改
b[j]+=d[i];//第j天的需求为mid个申请人在该天的需求
}
这种写法绝对会超时间复杂度,所以我们采用差分数组来进行区间修改:
由于需求数组开始的值就全为0,它的差分数组也是为0,所以我们就省略求差分数组的那步,直接进行区间修改。
memset(b,0,sizeof(b));
for(int i=1;i<=mid;i++)//mid个申请人
{
b[s[i]]+=d[i];
b[t[i]+1]-=d[i];
}
1 #include2 #include<string.h> 3 #include 4 #include 5 using namespace std; 6 //思路:二分+差分数组 7 int n; 8 int f[1000005],sum1[1000005],r[1000005],d[1000005],s[1000005],t[1000005]; 9 int Judge(int mid){ 10 memset(f,0,sizeof(f)); 11 for(int i=1;i<=mid;i++){//差分数组 多组区间修改 12 f[s[i]]+=d[i]; 13 f[t[i]+1]-=d[i]; 14 } 15 sum1[0]=0; 16 for(int i=1;i<=n;i++) 17 { 18 sum1[i]=sum1[i-1]+f[i]; 19 if(sum1[i]>r[i])//说明需求比实际可供应大 申请存在问题 20 return 0;//说明小了 21 } 22 return 1; 23 } 24 int main() 25 { 26 int m; 27 while(~scanf("%d%d",&n,&m)) 28 { 29 r[0]=0; 30 for(int i=1;i<=n;i++) 31 { 32 scanf("%d",&r[i]); 33 } 34 for(int j=1;j<=m;j++) 35 { 36 scanf("%d%d%d",&d[j],&s[j],&t[j]); 37 38 } 39 if(Judge(m)) 40 printf("0\n"); 41 else{ 42 int l=1,r=m,mid,ans=0; 43 while(l<=r){ 44 mid=(l+r)/2; 45 if(Judge(mid)==0)//答案就是求需求存在问题时申请人的编号 46 { 47 r=mid-1; 48 ans=mid; 49 } 50 else 51 l=mid+1; 52 } 53 printf("-1\n"); 54 printf("%d\n",ans); 55 } 56 } 57 }