蚁群算法aoc

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)

%%=========================================================================

%% ACATSP.m

%% Ant Colony Algorithm for Traveling Salesman Problem

%% ChengAihua,PLA Information Engineering University,ZhengZhou,China

%% Email:[email protected]

%% All rights reserved

%%-------------------------------------------------------------------------

%% 主要符号说明

%% C n个城市的坐标,n×2的矩阵

%% NC_max 最大迭代次数

%% m 蚂蚁个数

%% Alpha 表征信息素重要程度的参数

%% Beta 表征启发式因子重要程度的参数

%% Rho 信息素蒸发系数

%% Q 信息素增加强度系数

%% R_best 各代最佳路线

%% L_best 各代最佳路线的长度

%%=========================================================================

%%第一步:变量初始化

n=size(*,1);%*表示问题的规模(城市个数)

*=zer os(n,n);%D表示完全图的赋权邻接矩阵

for i=1:n

for j=1:n

if i~=j

D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;

else

D(i,j)=eps;

end

D(j,i)=D(i,j);

end

end

Eta=1./D;%Eta为启发因子,这里设为距离的倒数

Tau=ones(n,n);%Tau为信息素矩阵

Tabu=zeros(m,n);%存储并记录路径的生成

NC=1;%迭代计数器

R_best=zeros(NC_max,n);%各代最佳路线

L_best=inf.*ones(NC_max,1);%各代最佳路线的长度

L_ave=zeros(NC_max,1);%各代路线的平均长度

while NC<=NC_max%停止条件之一:达到最大迭代次数

%%第二步:将m只蚂蚁放到n个城市上

Randpos=[];

for i=1:(ceil(m/n))

Randpos=[Randpos,randperm(n)];

end

Tabu(:,1)=(Randpos(1,1:m))';

%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游

for j=2:n

for i=1:m

visited=Tabu(i,1:(j-1));%已访问的城市

J=zeros(1,(n-j+1));%待访问的城市

P=J;%待访问城市的选择概率分布

Jc=1;

for k=1:n

if length(find(visited==k))==0

J(Jc)=k;

Jc=Jc+1;

end

end

%下面计算待选城市的概率分布

for k=1:length(J)

P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);

en*

*=*/(sum(P));

%按概率原则选取下一个城市

Pcum=cumsum(P);

Select=find(Pcum>=rand);

to_visit=J(Select(1));

Tabu(i,j)=to_visit;

end

end

if NC>=2

Tabu(1,:)=R_best(NC-1,:);

end

%%第四步:记录本次迭代最佳路线

L=zeros(m,1);

for i=1:m

R=Tabu(i,:);

for j=1:(n-1)

L(i)=L(i)+D(R(j),R(j+1));

end

L(i)=L(i)+D(R(1),R(n));

end

L_best(NC)=min(L);

pos=find(L==L_best(NC));

R_best(NC,:)=Tabu(pos(1),:);

L_ave(NC)=mean(L);

NC=NC+1

%%第五步:更新信息素

Delta_Tau=zeros(n,n);

for i=1:m

for j=1:(n-1)

Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);

end

Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);

end

Tau=(1-Rho).*Tau+Delta_Tau;

%%第六步:禁忌表清零

Tabu=zeros(m,n);

end

%%第七步:输出结果

Pos=find(L_best==min(L_best));

Shortest_Route=R_best(Pos(1),:);

Shortest_Length=L_best(Pos(1));

subplot(1,2,1)

DrawRoute(C,Shortest_Route)

subplot(1,2,2)

plot(L_best)

hold on

plot(L_ave)

function DrawRoute(C,R)

%%====================================================================

%% DrawRoute.m

%% 画路线图的子函数

%%--------------------------------------------------------------------

%% C Coordinate 节点坐标,由一个N×2的矩阵存储

%% R Route 路线

%%====================================================================

N=length(R);

scatter(C(:,1),C(:,2));

hold on

plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])

hold on

for ii=2:N

plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)])

hold on

end

设置初始参数如下:

m=31;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100;

运行后得到15602的巡游路径,路线图和收敛曲线如下:

【GreenSim.C原创】TSP问题蚁群算法通用Matlab程序(附图)X

附中国31省会城市坐标为:

1304 2312

3639 1315

4177 2244

3712 1399

3488 1535

3326 1556

3238 1229

4196 1004

4312 790

4386 570

3007 1970

2562 1756

2788 1491

2381 1676

1332 695

3715 1678

3918 2179

4061 2370

3780 2212

3676 2578

4029 2838

4263 2931

3429 1908

3507 2367

3394 2643

3439 3201

2935 3240

3140 3550

2545 2357

2778 2826

2370 2975

你可能感兴趣的:(蚁群算法aoc)