#lib/rpn/proposal_target_layer.py
142
ind=int(ind)
#lib/dataset/imdb.py
111
for b in range(len(boxes)):
if boxes[b][2]< boxes[b][0]:
boxes[b][0] = 0
#lib/dataset/pascal_voc.py
208
x1 = float(bbox.find('xmin').text)
y1 = float(bbox.find('ymin').text)
x2 = float(bbox.find('xmax').text)
y2 = float(bbox.find('ymax').text)
30
self._classes = ('__background__', # always index 0
'red', 'yellow', 'green', 'off')
34
self.config = {'cleanup' : True,
'use_salt' : True,
'use_diff' : False,
'matlab_eval' : False,
'rpn_file' : None,
'min_size' : 2}
#self._image_index = self._load_image_set_index()
res_img_index = []
temp_img_indexs = self._load_image_set_index()
print 'zn=========Original img num:', len(temp_img_indexs)
for temp_img_index in temp_img_indexs:
#print temp_img_index
temp_dict = self._load_pascal_annotation(temp_img_index)
temp_boxes = temp_dict['boxes']
if len(temp_boxes) == 0:
print 'zn=======temp_boxes:',temp_boxes
continue
else:
res_img_index.append(temp_img_index)
self._image_index = res_img_index
# Default to roidb handler
self._roidb_handler = self.selective_search_roidb
self._salt = str(uuid.uuid4())
self._comp_id = 'comp4'
# PASCAL specific config options
self.config = {'cleanup' : True,
'use_salt' : True,
'use_diff' : False,
'matlab_eval' : False,
'rpn_file' : None,
'min_size' : 2}
#./lib/fast_rcnn/train.py
增加 import google.protobuf.text_format
#Faster-RCNN之TypeError: 'numpy.float64' object cannot be interpreted as an index
https://blog.csdn.net/Jonms/article/details/88885340
#替换lib/util/blob.py
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
"""Blob helper functions."""
import numpy as np
import cv2
def im_list_to_blob(ims):
"""Convert a list of images into a network input.
Assumes images are already prepared (means subtracted, BGR order, ...).
"""
max_shape = np.array([im.shape for im in ims]).max(axis=0)
num_images = len(ims)
blob = np.zeros((num_images, max_shape[0], max_shape[1], 3),
dtype=np.float32)
for i in xrange(num_images):
im = ims[i]
blob[i, 0:im.shape[0], 0:im.shape[1], :] = im
# Move channels (axis 3) to axis 1
# Axis order will become: (batch elem, channel, height, width)
channel_swap = (0, 3, 1, 2)
blob = blob.transpose(channel_swap)
return blob
def prep_im_for_blob(im, pixel_means, target_size, max_size):
"""Mean subtract and scale an image for use in a blob."""
im = im.astype(np.float32, copy=False)
im -= pixel_means
im_shape = im.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
im_scale = float(target_size) / float(im_size_min)
# Prevent the biggest axis from being more than MAX_SIZE
if np.round(im_scale * im_size_max) > max_size:
im_scale = float(max_size) / float(im_size_max)
im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale,
interpolation=cv2.INTER_LINEAR)
return im, im_scale
def prep_im_for_blob_224(im, pixel_means, target_size, max_size):
"""Mean subtract and scale an image for use in a blob."""
im = im.astype(np.float32, copy=False)
im -= pixel_means
im_shape = im.shape
im_size_x = np.min(im_shape[1])
im_size_y = np.max(im_shape[0])
im_scale_x = 224 / float(im_size_x)
im_scale_y = 224 / float(im_size_y)
im = cv2.resize(im, None, None, fx=im_scale_x, fy=im_scale_y,
interpolation=cv2.INTER_LINEAR)
return im, im_scale_x,im_scale_y
#替换lib/roi_data_layer.py
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
"""Compute minibatch blobs for training a Fast R-CNN network."""
import numpy as np
import numpy.random as npr
import cv2
from fast_rcnn.config import cfg
from utils.blob import prep_im_for_blob, im_list_to_blob,prep_im_for_blob_224
def get_minibatch(roidb, num_classes):
"""Given a roidb, construct a minibatch sampled from it."""
num_images = len(roidb)
num_reg_class = 2 if cfg.TRAIN.AGNOSTIC else num_classes
# Sample random scales to use for each image in this batch
random_scale_inds = npr.randint(0, high=len(cfg.TRAIN.SCALES),
size=num_images)
assert(cfg.TRAIN.BATCH_SIZE % num_images == 0) or (cfg.TRAIN.BATCH_SIZE == -1), \
'num_images ({}) must divide BATCH_SIZE ({})'. \
format(num_images, cfg.TRAIN.BATCH_SIZE)
rois_per_image = np.inf if cfg.TRAIN.BATCH_SIZE == -1 else cfg.TRAIN.BATCH_SIZE / num_images
fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image).astype(np.int)
# Get the input image blob, formatted for caffe
im_blob, im_scales_x,im_scales_y= _get_image_blob_224(roidb, random_scale_inds)
blobs = {'data': im_blob}
if cfg.TRAIN.HAS_RPN:
assert len(im_scales_x) == 1, "Single batch only"
assert len(im_scales_y) == 1, "Single batch only"
assert len(roidb) == 1, "Single batch only"
# gt boxes: (x1, y1, x2, y2, cls)
gt_inds = np.where(roidb[0]['gt_classes'] != 0)[0]
gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32)
gt_boxes[:, 0] = roidb[0]['boxes'][gt_inds, 0] * im_scales_x[0]
gt_boxes[:, 2] = roidb[0]['boxes'][gt_inds, 2] * im_scales_x[0]
gt_boxes[:, 1] = roidb[0]['boxes'][gt_inds, 1] * im_scales_y[0]
gt_boxes[:, 3] = roidb[0]['boxes'][gt_inds, 3] * im_scales_y[0]
gt_boxes[:, 4] = roidb[0]['gt_classes'][gt_inds]
blobs['gt_boxes'] = gt_boxes
if im_scales_x[0]>im_scales_y[0]:
im_scales=im_scales_y[0]
else:
im_scales=im_scales_x[0]
blobs['im_info'] = np.array(
[[im_blob.shape[2], im_blob.shape[3], im_scales]],
dtype=np.float32)
else: # not using RPN
# Now, build the region of interest and label blobs
rois_blob = np.zeros((0, 5), dtype=np.float32)
labels_blob = np.zeros((0), dtype=np.float32)
bbox_targets_blob = np.zeros((0, 4 * num_reg_class), dtype=np.float32)
bbox_inside_blob = np.zeros(bbox_targets_blob.shape, dtype=np.float32)
# all_overlaps = []
for im_i in xrange(num_images):
labels, overlaps, im_rois, bbox_targets, bbox_inside_weights \
= _sample_rois(roidb[im_i], fg_rois_per_image, rois_per_image,
num_classes)
# Add to RoIs blob
rois = _project_im_rois(im_rois, im_scales[im_i])
batch_ind = im_i * np.ones((rois.shape[0], 1))
rois_blob_this_image = np.hstack((batch_ind, rois))
rois_blob = np.vstack((rois_blob, rois_blob_this_image))
# Add to labels, bbox targets, and bbox loss blobs
labels_blob = np.hstack((labels_blob, labels))
bbox_targets_blob = np.vstack((bbox_targets_blob, bbox_targets))
bbox_inside_blob = np.vstack((bbox_inside_blob, bbox_inside_weights))
# all_overlaps = np.hstack((all_overlaps, overlaps))
# For debug visualizations
# _vis_minibatch(im_blob, rois_blob, labels_blob, all_overlaps)
blobs['rois'] = rois_blob
blobs['labels'] = labels_blob
if cfg.TRAIN.BBOX_REG:
blobs['bbox_targets'] = bbox_targets_blob
blobs['bbox_inside_weights'] = bbox_inside_blob
blobs['bbox_outside_weights'] = \
np.array(bbox_inside_blob > 0).astype(np.float32)
return blobs
def _sample_rois(roidb, fg_rois_per_image, rois_per_image, num_classes):
"""Generate a random sample of RoIs comprising foreground and background
examples.
"""
# label = class RoI has max overlap with
labels = roidb['max_classes']
overlaps = roidb['max_overlaps']
rois = roidb['boxes']
# Select foreground RoIs as those with >= FG_THRESH overlap
fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0]
# Guard against the case when an image has fewer than fg_rois_per_image
# foreground RoIs
fg_rois_per_this_image = np.minimum(fg_rois_per_image, fg_inds.size)
# Sample foreground regions without replacement
if fg_inds.size > 0:
fg_inds = npr.choice(
fg_inds, size=fg_rois_per_this_image, replace=False)
# Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI)
bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) &
(overlaps >= cfg.TRAIN.BG_THRESH_LO))[0]
# Compute number of background RoIs to take from this image (guarding
# against there being fewer than desired)
bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image
bg_rois_per_this_image = np.minimum(bg_rois_per_this_image,
bg_inds.size)
# Sample foreground regions without replacement
if bg_inds.size > 0:
bg_inds = npr.choice(
bg_inds, size=bg_rois_per_this_image, replace=False)
# The indices that we're selecting (both fg and bg)
keep_inds = np.append(fg_inds, bg_inds)
# Select sampled values from various arrays:
labels = labels[keep_inds]
# Clamp labels for the background RoIs to 0
labels[fg_rois_per_this_image:] = 0
overlaps = overlaps[keep_inds]
rois = rois[keep_inds]
bbox_targets, bbox_inside_weights = _get_bbox_regression_labels(
roidb['bbox_targets'][keep_inds, :], num_classes)
return labels, overlaps, rois, bbox_targets, bbox_inside_weights
def _get_image_blob(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
for i in xrange(num_images):
im = cv2.imread(roidb[i]['image'])
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
im, im_scale= prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
cfg.TRAIN.MAX_SIZE)
im_scales.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales
def _get_image_blob_224(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales_x = []
im_scales_y = []
for i in xrange(num_images):
im = cv2.imread(roidb[i]['image'])
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
im, im_scale_x, im_scale_y= prep_im_for_blob_224(im, cfg.PIXEL_MEANS, target_size,
cfg.TRAIN.MAX_SIZE)
im_scales_x.append(im_scale_x)
im_scales_y.append(im_scale_y)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales_x,im_scales_y
def _project_im_rois(im_rois, im_scale_factor):
"""Project image RoIs into the rescaled training image."""
rois = im_rois * im_scale_factor
return rois
def _project_im_rois_224(im_rois, im_scale_x,im_scale_y):
"""Project image RoIs into the rescaled training image."""
rois = im_rois * im_scale_factor
return rois
def _get_bbox_regression_labels(bbox_target_data, num_classes):
"""Bounding-box regression targets are stored in a compact form in the
roidb.
This function expands those targets into the 4-of-4*K representation used
by the network (i.e. only one class has non-zero targets). The loss weights
are similarly expanded.
Returns:
bbox_target_data (ndarray): N x 4K blob of regression targets
bbox_inside_weights (ndarray): N x 4K blob of loss weights
"""
clss = bbox_target_data[:, 0]
num_reg_class = 2 if cfg.TRAIN.AGNOSTIC else num_classes
bbox_targets = np.zeros((clss.size, 4 * num_reg_class), dtype=np.float32)
bbox_inside_weights = np.zeros(bbox_targets.shape, dtype=np.float32)
inds = np.where(clss > 0)[0]
if cfg.TRAIN.AGNOSTIC:
for ind in inds:
cls = clss[ind]
start = 4 * (1 if cls > 0 else 0)
end = start + 4
bbox_targets[ind, start:end] = bbox_target_data[ind, 1:]
bbox_inside_weights[ind, start:end] = cfg.TRAIN.BBOX_INSIDE_WEIGHTS
else:
for ind in inds:
cls = clss[ind]
start = 4 * cls
end = start + 4
bbox_targets[ind, start:end] = bbox_target_data[ind, 1:]
bbox_inside_weights[ind, start:end] = cfg.TRAIN.BBOX_INSIDE_WEIGHTS
return bbox_targets, bbox_inside_weights
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
"""Visualize a mini-batch for debugging."""
import matplotlib.pyplot as plt
for i in xrange(rois_blob.shape[0]):
rois = rois_blob[i, :]
im_ind = rois[0]
roi = rois[1:]
im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
im += cfg.PIXEL_MEANS
im = im[:, :, (2, 1, 0)]
im = im.astype(np.uint8)
cls = labels_blob[i]
plt.imshow(im)
print 'class: ', cls, ' overlap: ', overlaps[i]
plt.gca().add_patch(
plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
roi[3] - roi[1], fill=False,
edgecolor='r', linewidth=3)
)
plt.show()
ps:https://blog.csdn.net/qq_21089969/article/details/69422624
很详细