RFCN更改部分

#lib/rpn/proposal_target_layer.py
142

ind=int(ind)

#lib/dataset/imdb.py
111

            for b in range(len(boxes)):
                if boxes[b][2]< boxes[b][0]:
                    boxes[b][0] = 0


#lib/dataset/pascal_voc.py
208

            x1 = float(bbox.find('xmin').text)
            y1 = float(bbox.find('ymin').text)
            x2 = float(bbox.find('xmax').text)
            y2 = float(bbox.find('ymax').text)


30

        self._classes = ('__background__', # always index 0
                         'red', 'yellow', 'green', 'off')


34

        self.config = {'cleanup'     : True,
                       'use_salt'    : True,
                       'use_diff'    : False,
                       'matlab_eval' : False,
                       'rpn_file'    : None,
                       'min_size'    : 2}
        #self._image_index = self._load_image_set_index()
        res_img_index = []
        temp_img_indexs = self._load_image_set_index()
        print 'zn=========Original img num:', len(temp_img_indexs)
       
        for temp_img_index in temp_img_indexs:  
            #print temp_img_index
            temp_dict = self._load_pascal_annotation(temp_img_index)  
            temp_boxes = temp_dict['boxes']
            if len(temp_boxes) == 0:
                print 'zn=======temp_boxes:',temp_boxes
                continue
            else:
                res_img_index.append(temp_img_index)
        self._image_index = res_img_index
        # Default to roidb handler
        self._roidb_handler = self.selective_search_roidb
        self._salt = str(uuid.uuid4())
        self._comp_id = 'comp4'

        # PASCAL specific config options
        self.config = {'cleanup'     : True,
                       'use_salt'    : True,
                       'use_diff'    : False,
                       'matlab_eval' : False,
                       'rpn_file'    : None,
                       'min_size'    : 2}


#./lib/fast_rcnn/train.py
增加 import google.protobuf.text_format
#Faster-RCNN之TypeError: 'numpy.float64' object cannot be interpreted as an index
https://blog.csdn.net/Jonms/article/details/88885340
#替换lib/util/blob.py
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

"""Blob helper functions."""

import numpy as np
import cv2

def im_list_to_blob(ims):
    """Convert a list of images into a network input.

    Assumes images are already prepared (means subtracted, BGR order, ...).
    """
    max_shape = np.array([im.shape for im in ims]).max(axis=0)
    num_images = len(ims)
    blob = np.zeros((num_images, max_shape[0], max_shape[1], 3),
                    dtype=np.float32)
    for i in xrange(num_images):
        im = ims[i]
        blob[i, 0:im.shape[0], 0:im.shape[1], :] = im
    # Move channels (axis 3) to axis 1
    # Axis order will become: (batch elem, channel, height, width)
    channel_swap = (0, 3, 1, 2)
    blob = blob.transpose(channel_swap)
    return blob

def prep_im_for_blob(im, pixel_means, target_size, max_size):
    """Mean subtract and scale an image for use in a blob."""
    im = im.astype(np.float32, copy=False)
    im -= pixel_means
    im_shape = im.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(target_size) / float(im_size_min)
    # Prevent the biggest axis from being more than MAX_SIZE
    if np.round(im_scale * im_size_max) > max_size:
        im_scale = float(max_size) / float(im_size_max)
    im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale,
                    interpolation=cv2.INTER_LINEAR)

    return im, im_scale

def prep_im_for_blob_224(im, pixel_means, target_size, max_size):
    """Mean subtract and scale an image for use in a blob."""
    im = im.astype(np.float32, copy=False)
    im -= pixel_means
    im_shape = im.shape
    im_size_x = np.min(im_shape[1])
    im_size_y = np.max(im_shape[0])
    im_scale_x = 224 / float(im_size_x)
    im_scale_y = 224 / float(im_size_y)
    im = cv2.resize(im, None, None, fx=im_scale_x, fy=im_scale_y,
                    interpolation=cv2.INTER_LINEAR)

    return im, im_scale_x,im_scale_y
#替换lib/roi_data_layer.py
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

"""Compute minibatch blobs for training a Fast R-CNN network."""

import numpy as np
import numpy.random as npr
import cv2
from fast_rcnn.config import cfg
from utils.blob import prep_im_for_blob, im_list_to_blob,prep_im_for_blob_224

def get_minibatch(roidb, num_classes):
    """Given a roidb, construct a minibatch sampled from it."""
    num_images = len(roidb)
    num_reg_class = 2 if cfg.TRAIN.AGNOSTIC else num_classes
    # Sample random scales to use for each image in this batch
    random_scale_inds = npr.randint(0, high=len(cfg.TRAIN.SCALES),
                                    size=num_images)
    assert(cfg.TRAIN.BATCH_SIZE % num_images == 0) or (cfg.TRAIN.BATCH_SIZE == -1), \
        'num_images ({}) must divide BATCH_SIZE ({})'. \
        format(num_images, cfg.TRAIN.BATCH_SIZE)
    rois_per_image = np.inf if cfg.TRAIN.BATCH_SIZE == -1 else cfg.TRAIN.BATCH_SIZE / num_images
    fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image).astype(np.int)

    # Get the input image blob, formatted for caffe
    im_blob, im_scales_x,im_scales_y= _get_image_blob_224(roidb, random_scale_inds)

    blobs = {'data': im_blob}

    if cfg.TRAIN.HAS_RPN:
        assert len(im_scales_x) == 1, "Single batch only"
        assert len(im_scales_y) == 1, "Single batch only"
        assert len(roidb) == 1, "Single batch only"
        # gt boxes: (x1, y1, x2, y2, cls)
        gt_inds = np.where(roidb[0]['gt_classes'] != 0)[0]
        gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32)
        gt_boxes[:, 0] = roidb[0]['boxes'][gt_inds, 0] * im_scales_x[0]
        gt_boxes[:, 2] = roidb[0]['boxes'][gt_inds, 2] * im_scales_x[0]
        gt_boxes[:, 1] = roidb[0]['boxes'][gt_inds, 1] * im_scales_y[0]
        gt_boxes[:, 3] = roidb[0]['boxes'][gt_inds, 3] * im_scales_y[0]
        gt_boxes[:, 4] = roidb[0]['gt_classes'][gt_inds]
        blobs['gt_boxes'] = gt_boxes
        if im_scales_x[0]>im_scales_y[0]:
            im_scales=im_scales_y[0]
        else:
            im_scales=im_scales_x[0]
        blobs['im_info'] = np.array(
            [[im_blob.shape[2], im_blob.shape[3], im_scales]],
            dtype=np.float32)
    else: # not using RPN
        # Now, build the region of interest and label blobs
        rois_blob = np.zeros((0, 5), dtype=np.float32)
        labels_blob = np.zeros((0), dtype=np.float32)
        bbox_targets_blob = np.zeros((0, 4 * num_reg_class), dtype=np.float32)
        bbox_inside_blob = np.zeros(bbox_targets_blob.shape, dtype=np.float32)
        # all_overlaps = []
        for im_i in xrange(num_images):
            labels, overlaps, im_rois, bbox_targets, bbox_inside_weights \
                = _sample_rois(roidb[im_i], fg_rois_per_image, rois_per_image,
                               num_classes)

            # Add to RoIs blob
            rois = _project_im_rois(im_rois, im_scales[im_i])
            batch_ind = im_i * np.ones((rois.shape[0], 1))
            rois_blob_this_image = np.hstack((batch_ind, rois))
            rois_blob = np.vstack((rois_blob, rois_blob_this_image))

            # Add to labels, bbox targets, and bbox loss blobs
            labels_blob = np.hstack((labels_blob, labels))
            bbox_targets_blob = np.vstack((bbox_targets_blob, bbox_targets))
            bbox_inside_blob = np.vstack((bbox_inside_blob, bbox_inside_weights))
            # all_overlaps = np.hstack((all_overlaps, overlaps))

        # For debug visualizations
        # _vis_minibatch(im_blob, rois_blob, labels_blob, all_overlaps)

        blobs['rois'] = rois_blob
        blobs['labels'] = labels_blob

        if cfg.TRAIN.BBOX_REG:
            blobs['bbox_targets'] = bbox_targets_blob
            blobs['bbox_inside_weights'] = bbox_inside_blob
            blobs['bbox_outside_weights'] = \
                np.array(bbox_inside_blob > 0).astype(np.float32)

    return blobs


def _sample_rois(roidb, fg_rois_per_image, rois_per_image, num_classes):
    """Generate a random sample of RoIs comprising foreground and background
    examples.
    """
    # label = class RoI has max overlap with
    labels = roidb['max_classes']
    overlaps = roidb['max_overlaps']
    rois = roidb['boxes']

    # Select foreground RoIs as those with >= FG_THRESH overlap
    fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0]
    # Guard against the case when an image has fewer than fg_rois_per_image
    # foreground RoIs
    fg_rois_per_this_image = np.minimum(fg_rois_per_image, fg_inds.size)
    # Sample foreground regions without replacement
    if fg_inds.size > 0:
        fg_inds = npr.choice(
                fg_inds, size=fg_rois_per_this_image, replace=False)

    # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI)
    bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) &
                       (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0]
    # Compute number of background RoIs to take from this image (guarding
    # against there being fewer than desired)
    bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image
    bg_rois_per_this_image = np.minimum(bg_rois_per_this_image,
                                        bg_inds.size)
    # Sample foreground regions without replacement
    if bg_inds.size > 0:
        bg_inds = npr.choice(
                bg_inds, size=bg_rois_per_this_image, replace=False)

    # The indices that we're selecting (both fg and bg)
    keep_inds = np.append(fg_inds, bg_inds)
    # Select sampled values from various arrays:
    labels = labels[keep_inds]
    # Clamp labels for the background RoIs to 0
    labels[fg_rois_per_this_image:] = 0
    overlaps = overlaps[keep_inds]
    rois = rois[keep_inds]

    bbox_targets, bbox_inside_weights = _get_bbox_regression_labels(
            roidb['bbox_targets'][keep_inds, :], num_classes)

    return labels, overlaps, rois, bbox_targets, bbox_inside_weights

def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale= prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales
def _get_image_blob_224(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales_x = []
    im_scales_y = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale_x, im_scale_y= prep_im_for_blob_224(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales_x.append(im_scale_x)
        im_scales_y.append(im_scale_y)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales_x,im_scales_y
def _project_im_rois(im_rois, im_scale_factor):
    """Project image RoIs into the rescaled training image."""
    rois = im_rois * im_scale_factor
    return rois
def _project_im_rois_224(im_rois, im_scale_x,im_scale_y):
    """Project image RoIs into the rescaled training image."""
    rois = im_rois * im_scale_factor
    return rois
def _get_bbox_regression_labels(bbox_target_data, num_classes):
    """Bounding-box regression targets are stored in a compact form in the
    roidb.

    This function expands those targets into the 4-of-4*K representation used
    by the network (i.e. only one class has non-zero targets). The loss weights
    are similarly expanded.

    Returns:
        bbox_target_data (ndarray): N x 4K blob of regression targets
        bbox_inside_weights (ndarray): N x 4K blob of loss weights
    """
    clss = bbox_target_data[:, 0]
    num_reg_class = 2 if cfg.TRAIN.AGNOSTIC else num_classes
    bbox_targets = np.zeros((clss.size, 4 * num_reg_class), dtype=np.float32)
    bbox_inside_weights = np.zeros(bbox_targets.shape, dtype=np.float32)
    inds = np.where(clss > 0)[0]

    if cfg.TRAIN.AGNOSTIC:
        for ind in inds:
            cls = clss[ind]
            start = 4 * (1 if cls > 0 else 0)
            end = start + 4
            bbox_targets[ind, start:end] = bbox_target_data[ind, 1:]
            bbox_inside_weights[ind, start:end] = cfg.TRAIN.BBOX_INSIDE_WEIGHTS
    else:
        for ind in inds:
            cls = clss[ind]
            start = 4 * cls
            end = start + 4
            bbox_targets[ind, start:end] = bbox_target_data[ind, 1:]
            bbox_inside_weights[ind, start:end] = cfg.TRAIN.BBOX_INSIDE_WEIGHTS

    return bbox_targets, bbox_inside_weights


def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
    """Visualize a mini-batch for debugging."""
    import matplotlib.pyplot as plt
    for i in xrange(rois_blob.shape[0]):
        rois = rois_blob[i, :]
        im_ind = rois[0]
        roi = rois[1:]
        im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy()
        im += cfg.PIXEL_MEANS
        im = im[:, :, (2, 1, 0)]
        im = im.astype(np.uint8)
        cls = labels_blob[i]
        plt.imshow(im)
        print 'class: ', cls, ' overlap: ', overlaps[i]
        plt.gca().add_patch(
            plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0],
                          roi[3] - roi[1], fill=False,
                          edgecolor='r', linewidth=3)
            )
        plt.show()

 

ps:https://blog.csdn.net/qq_21089969/article/details/69422624

很详细

你可能感兴趣的:(RFCN更改部分)