5G NR 物理下行共享信道(PDSCH)加扰和调制

5G NR 物理下行共享信道(PDSCH)加扰和调制

  • 一、加扰
  • 二、调制
  • 三、层映射

一、加扰

最多可以传输两个码字 q ∈ { 0 , 1 } q \in\{0,1\} q{0,1} 。在单码字传输的情况下, q = 0 q=0 q=0
对于每个码字 q q q ,UE应假设比特块 b ( q ) ( 0 ) , … , b ( q ) ( M b i t ( q ) − 1 ) b^{(q)}(0), \ldots, b^{(q)}\left(M_{\mathrm{bit}}^{(q)}-1\right) b(q)(0),,b(q)(Mbit(q)1) 在调制之前被加扰, M b i t ( q ) M_{\mathrm{bit}}^{(q)} Mbit(q) 是在物理信道中传输的码字 q q q 的比特数量,根据如下公式产生一个加扰比特块 b ~ ( q ) ( 0 ) , … , b ~ ( q ) ( M b i t ( q ) − 1 ) \tilde{b}^{(q)}(0), \ldots, \tilde{b}^{(q)}\left(M_{\mathrm{bit}}^{(q)}-1\right) b~(q)(0),,b~(q)(Mbit(q)1)
b ~ ( q ) ( i ) = ( b ( q ) ( i ) + c ( q ) ( i ) )   m o d   2 \widetilde{b}^{(q)}(i)=\left(b^{(q)}(i)+c^{(q)}(i)\right) \bmod 2 b (q)(i)=(b(q)(i)+c(q)(i))mod2

式中,加扰序列 c ( q ) ( i ) c^{(q)}(i) c(q)(i) 由5.2.1节给出。加扰序列生成器应按照如下公式初始化: c init  = n R N T I ⋅ 2 15 + q ⋅ 2 14 + n I D c_{\text {init }}=n_{\mathrm{RNTI}} \cdot 2^{15}+q \cdot 2^{14}+n_{\mathrm{ID}} cinit =nRNTI215+q214+nID

式中,

  • n I D ∈ { 0 , 1 , … , 1023 } n_{\mathrm{ID}} \in\{0,1, \ldots, 1023\} nID{0,1,,1023} 等于高层参数dataScramblingIdentityPDSCH(如果配置),并且RNTI等于C-RNTI、MCS-C-RNTI或CS-RNTI,并且在公共搜索空间中不使用DCI格式1_0调度传输,
  • 否则, n I D = N I D c e l l n_{\mathrm{ID}}=N_{\mathrm{ID}}^{\mathrm{cell}} nID=NIDcell

二、调制

对于每个码字 q q q ,UE应假设加扰比特块 b ~ ( q ) ( 0 ) , … , b ~ ( q ) ( M b i t ( q ) − 1 ) \tilde{b}^{(q)}(0), \ldots, \tilde{b}^{(q)}\left(M_{\mathrm{bit}}^{(q)}-1\right) b~(q)(0),,b~(q)(Mbit(q)1) 使用表2-1中的一种调制格式,按5.1节所述进行调制,产生一个复数值调制符号块 d ( q ) ( 0 ) , … , d ( q ) ( M s y m b ( q ) − 1 ) d^{(q)}(0), \ldots, d^{(q)}\left(M_{\mathrm{symb}}^{(q)}-1\right) d(q)(0),,d(q)(Msymb(q)1)

表2-1:支持的调制格式
调制格式 阶数
QPSK 2
16QAM 4
64QAM 6
256QAM 8

三、层映射

UE应假设根据表3-1将要发送的每个码字的复数值调制符号映射到一个或多个层上。码字 q q q 的复数值调制符号 d ( q ) ( 0 ) , … , d ( q ) ( M s y m b ( q ) − 1 ) d^{(q)}(0), \ldots, d^{(q)}\left(M_{\mathrm{symb}}^{(q)}-1\right) d(q)(0),,d(q)(Msymb(q)1) 应映射到层 x ( i ) = [ x ( 0 ) ( i ) … x ( ν − 1 ) ( i ) ] T x(i)=\left[\begin{array}{lll}{x^{(0)}(i)} & {\dots} & {x^{(\nu-1)}(i)}\end{array}\right]^{T} x(i)=[x(0)(i)x(ν1)(i)]T 上, i = 0 , 1 , … , M s y m b l a y e r − 1 i=0,1, \ldots, M_{\mathrm{symb}}^{\mathrm{layer}}-1 i=0,1,,Msymblayer1,式中 v v v 是层数, M s y m b l a y e r M_{\mathrm{symb}}^{\mathrm{layer}} Msymblayer 是每层调制符号数。

表3-1:空分复用的码字-层映射
层数 码字数 码字-层映射 i = 0 , 1 , … , M s y m b l a y e r − 1 i=0,1, \ldots, M_{\mathrm{symb}}^{\mathrm{layer}}-1 i=0,1,,Msymblayer1
1 1 x ( 0 ) ( i ) = d ( 0 ) ( i ) x^{(0)}(i)=d^{(0)}(i) x(0)(i)=d(0)(i) M s y m b l a y e r = M s y m b ( 0 ) M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} Msymblayer=Msymb(0)
2 1 x ( 0 ) ( i ) = d ( 0 ) ( 2 i ) x ( 1 ) ( i ) = d ( 0 ) ( 2 i + 1 ) \begin{array}{l}{x^{(0)}(i)=d^{(0)}(2 i)} \\ {x^{(1)}(i)=d^{(0)}(2 i+1)}\end{array} x(0)(i)=d(0)(2i)x(1)(i)=d(0)(2i+1) M s y m b l a y e r = M s y m b ( 0 ) / 2 M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 2 Msymblayer=Msymb(0)/2
3 1 x ( 0 ) ( i ) = d ( 0 ) ( 3 i ) x ( 1 ) ( i ) = d ( 0 ) ( 3 i + 1 ) x ( 2 ) ( i ) = d ( 0 ) ( 3 i + 2 ) \begin{array}{l}{x^{(0)}(i)=d^{(0)}(3 i)} \\ {x^{(1)}(i)=d^{(0)}(3 i+1)} \\ {x^{(2)}(i)=d^{(0)}(3 i+2)}\end{array} x(0)(i)=d(0)(3i)x(1)(i)=d(0)(3i+1)x(2)(i)=d(0)(3i+2) M s y m b l a y e r = M s y m b ( 0 ) / 3 M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 3 Msymblayer=Msymb(0)/3
4 1 x ( 0 ) ( i ) = d ( 0 ) ( 4 i ) x ( 1 ) ( i ) = d ( 0 ) ( 4 i + 1 ) x ( 2 ) ( i ) = d ( 0 ) ( 4 i + 2 ) x ( 3 ) ( i ) = d ( 0 ) ( 4 i + 3 ) \begin{array}{l}{x^{(0)}(i)=d^{(0)}(4 i)} \\ {x^{(1)}(i)=d^{(0)}(4 i+1)} \\ {x^{(2)}(i)=d^{(0)}(4 i+2)} \\ {x^{(3)}(i)=d^{(0)}(4 i+3)}\end{array} x(0)(i)=d(0)(4i)x(1)(i)=d(0)(4i+1)x(2)(i)=d(0)(4i+2)x(3)(i)=d(0)(4i+3) M s y m b l a y e r = M s y m b ( 0 ) / 4 M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 4 Msymblayer=Msymb(0)/4
5 2 x ( 0 ) ( i ) = d ( 0 ) ( 2 i ) x ( 1 ) ( i ) = d ( 0 ) ( 2 i + 1 ) x ( 2 ) ( i ) = d ( 1 ) ( 3 i ) x ( 3 ) ( i ) = d ( 1 ) ( 3 i + 1 ) x ( 4 ) ( i ) = d ( 1 ) ( 3 i + 2 ) \begin{array}{l}{x^{(0)}(i)=d^{(0)}(2 i)} \\ {x^{(1)}(i)=d^{(0)}(2 i+1)} \\ {x^{(2)}(i)=d^{(1)}(3 i)} \\ {x^{(3)}(i)=d^{(1)}(3 i+1)} \\ {x^{(4)}(i)=d^{(1)}(3 i+2)}\end{array} x(0)(i)=d(0)(2i)x(1)(i)=d(0)(2i+1)x(2)(i)=d(1)(3i)x(3)(i)=d(1)(3i+1)x(4)(i)=d(1)(3i+2) M s y m b l a y e r = M s y m b ( 0 ) / 2 = M s y m b ( 1 ) / 3 M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 2=M_{\mathrm{symb}}^{(1)} / 3 Msymblayer=Msymb(0)/2=Msymb(1)/3
6 2 x ( 0 ) ( i ) = d ( 0 ) ( 3 i ) x ( 1 ) ( i ) = d ( 0 ) ( 3 i + 1 ) x ( 2 ) ( i ) = d ( 0 ) ( 3 i + 2 ) x ( 3 ) ( i ) = d ( 1 ) ( 3 i ) x ( 4 ) ( i ) = d ( 1 ) ( 3 i + 1 ) x ( 5 ) ( i ) = d ( 1 ) ( 3 i + 2 ) \begin{array}{l}{x^{(0)}(i)=d^{(0)}(3 i)} \\ {x^{(1)}(i)=d^{(0)}(3 i+1)} \\ {x^{(2)}(i)=d^{(0)}(3 i+2)} \\ {x^{(3)}(i)=d^{(1)}(3 i)} \\ {x^{(4)}(i)=d^{(1)}(3 i+1)} \\ {x^{(5)}(i)=d^{(1)}(3 i+2)}\end{array} x(0)(i)=d(0)(3i)x(1)(i)=d(0)(3i+1)x(2)(i)=d(0)(3i+2)x(3)(i)=d(1)(3i)x(4)(i)=d(1)(3i+1)x(5)(i)=d(1)(3i+2) M s y m b l a y e r = M s y m b ( 0 ) / 3 = M s y m b ( 1 ) / 3 M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 3=M_{\mathrm{symb}}^{(1)} / 3 Msymblayer=Msymb(0)/3=Msymb(1)/3
7 2 x ( 0 ) ( i ) = d ( 0 ) ( 3 i ) x ( 1 ) ( i ) = d ( 0 ) ( 3 i + 1 ) x ( 2 ) ( i ) = d ( 0 ) ( 3 i + 2 ) x ( 3 ) ( i ) = d ( 1 ) ( 4 i ) x ( 4 ) ( i ) = d ( 1 ) ( 4 i + 1 ) x ( 5 ) ( i ) = d ( 1 ) ( 4 i + 2 ) x ( 6 ) ( i ) = d ( 1 ) ( 4 i + 3 ) \begin{array}{l}{x^{(0)}(i)=d^{(0)}(3 i)} \\ {x^{(1)}(i)=d^{(0)}(3 i+1)} \\ {x^{(2)}(i)=d^{(0)}(3 i+2)} \\ {x^{(3)}(i)=d^{(1)}(4 i)} \\ {x^{(4)}(i)=d^{(1)}(4 i+1)} \\ {x^{(5)}(i)=d^{(1)}(4 i+2)} \\ {x^{(6)}(i)=d^{(1)}(4 i+3)}\end{array} x(0)(i)=d(0)(3i)x(1)(i)=d(0)(3i+1)x(2)(i)=d(0)(3i+2)x(3)(i)=d(1)(4i)x(4)(i)=d(1)(4i+1)x(5)(i)=d(1)(4i+2)x(6)(i)=d(1)(4i+3) M s y m b l a y e r = M s y m b ( 0 ) / 3 = M s y m b ( 1 ) / 4 M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 3=M_{\mathrm{symb}}^{(1)} / 4 Msymblayer=Msymb(0)/3=Msymb(1)/4
8 2 x ( 0 ) ( i ) = d ( 0 ) ( 4 i ) x ( 1 ) ( i ) = d ( 0 ) ( 4 i + 1 ) x ( 2 ) ( i ) = d ( 0 ) ( 4 i + 2 ) x ( 3 ) ( i ) = d ( 0 ) ( 4 i + 3 ) x ( 3 ) ( i ) = d ( 0 ) ( 4 i ) x ( 4 ) ( i ) = d ( 1 ) ( 4 i + 1 ) x ( 6 ) ( i ) = d ( 1 ) ( 4 i + 2 ) x ( 7 ) ( i ) = d ( 1 ) ( 4 i + 3 ) \begin{array}{l}{x^{(0)}(i)=d^{(0)}(4 i)} \\ {x^{(1)}(i)=d^{(0)}(4 i+1)} \\ {x^{(2)}(i)=d^{(0)}(4 i+2)} \\ {x^{(3)}(i)=d^{(0)}(4 i+3)} \\ {x^{(3)}(i)=d^{(0)}(4 i)} \\ {x^{(4)}(i)=d^{(1)}(4 i+1)} \\ {x^{(6)}(i)=d^{(1)}(4 i+2)} \\ {x^{(7)}(i)=d^{(1)}(4 i+3)}\end{array} x(0)(i)=d(0)(4i)x(1)(i)=d(0)(4i+1)x(2)(i)=d(0)(4i+2)x(3)(i)=d(0)(4i+3)x(3)(i)=d(0)(4i)x(4)(i)=d(1)(4i+1)x(6)(i)=d(1)(4i+2)x(7)(i)=d(1)(4i+3) M s y m b l a y e r = M s y m b ( 0 ) / 4 = M s y m b ( 1 ) / 4 M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 4=M_{\mathrm{symb}}^{(1)} / 4 Msymblayer=Msymb(0)/4=Msymb(1)/4

你可能感兴趣的:(5G,NR相关)