最多可以传输两个码字 q ∈ { 0 , 1 } q \in\{0,1\} q∈{0,1} 。在单码字传输的情况下, q = 0 q=0 q=0 。
对于每个码字 q q q ,UE应假设比特块 b ( q ) ( 0 ) , … , b ( q ) ( M b i t ( q ) − 1 ) b^{(q)}(0), \ldots, b^{(q)}\left(M_{\mathrm{bit}}^{(q)}-1\right) b(q)(0),…,b(q)(Mbit(q)−1) 在调制之前被加扰, M b i t ( q ) M_{\mathrm{bit}}^{(q)} Mbit(q) 是在物理信道中传输的码字 q q q 的比特数量,根据如下公式产生一个加扰比特块 b ~ ( q ) ( 0 ) , … , b ~ ( q ) ( M b i t ( q ) − 1 ) \tilde{b}^{(q)}(0), \ldots, \tilde{b}^{(q)}\left(M_{\mathrm{bit}}^{(q)}-1\right) b~(q)(0),…,b~(q)(Mbit(q)−1) :
b ~ ( q ) ( i ) = ( b ( q ) ( i ) + c ( q ) ( i ) ) m o d 2 \widetilde{b}^{(q)}(i)=\left(b^{(q)}(i)+c^{(q)}(i)\right) \bmod 2 b (q)(i)=(b(q)(i)+c(q)(i))mod2
式中,加扰序列 c ( q ) ( i ) c^{(q)}(i) c(q)(i) 由5.2.1节给出。加扰序列生成器应按照如下公式初始化: c init = n R N T I ⋅ 2 15 + q ⋅ 2 14 + n I D c_{\text {init }}=n_{\mathrm{RNTI}} \cdot 2^{15}+q \cdot 2^{14}+n_{\mathrm{ID}} cinit =nRNTI⋅215+q⋅214+nID
式中,
对于每个码字 q q q ,UE应假设加扰比特块 b ~ ( q ) ( 0 ) , … , b ~ ( q ) ( M b i t ( q ) − 1 ) \tilde{b}^{(q)}(0), \ldots, \tilde{b}^{(q)}\left(M_{\mathrm{bit}}^{(q)}-1\right) b~(q)(0),…,b~(q)(Mbit(q)−1) 使用表2-1中的一种调制格式,按5.1节所述进行调制,产生一个复数值调制符号块 d ( q ) ( 0 ) , … , d ( q ) ( M s y m b ( q ) − 1 ) d^{(q)}(0), \ldots, d^{(q)}\left(M_{\mathrm{symb}}^{(q)}-1\right) d(q)(0),…,d(q)(Msymb(q)−1) 。
调制格式 | 阶数 |
---|---|
QPSK | 2 |
16QAM | 4 |
64QAM | 6 |
256QAM | 8 |
UE应假设根据表3-1将要发送的每个码字的复数值调制符号映射到一个或多个层上。码字 q q q 的复数值调制符号 d ( q ) ( 0 ) , … , d ( q ) ( M s y m b ( q ) − 1 ) d^{(q)}(0), \ldots, d^{(q)}\left(M_{\mathrm{symb}}^{(q)}-1\right) d(q)(0),…,d(q)(Msymb(q)−1) 应映射到层 x ( i ) = [ x ( 0 ) ( i ) … x ( ν − 1 ) ( i ) ] T x(i)=\left[\begin{array}{lll}{x^{(0)}(i)} & {\dots} & {x^{(\nu-1)}(i)}\end{array}\right]^{T} x(i)=[x(0)(i)…x(ν−1)(i)]T 上, i = 0 , 1 , … , M s y m b l a y e r − 1 i=0,1, \ldots, M_{\mathrm{symb}}^{\mathrm{layer}}-1 i=0,1,…,Msymblayer−1,式中 v v v 是层数, M s y m b l a y e r M_{\mathrm{symb}}^{\mathrm{layer}} Msymblayer 是每层调制符号数。
层数 | 码字数 | 码字-层映射 i = 0 , 1 , … , M s y m b l a y e r − 1 i=0,1, \ldots, M_{\mathrm{symb}}^{\mathrm{layer}}-1 i=0,1,…,Msymblayer−1 |
---|---|---|
1 | 1 | x ( 0 ) ( i ) = d ( 0 ) ( i ) x^{(0)}(i)=d^{(0)}(i) x(0)(i)=d(0)(i), M s y m b l a y e r = M s y m b ( 0 ) M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} Msymblayer=Msymb(0) |
2 | 1 | x ( 0 ) ( i ) = d ( 0 ) ( 2 i ) x ( 1 ) ( i ) = d ( 0 ) ( 2 i + 1 ) \begin{array}{l}{x^{(0)}(i)=d^{(0)}(2 i)} \\ {x^{(1)}(i)=d^{(0)}(2 i+1)}\end{array} x(0)(i)=d(0)(2i)x(1)(i)=d(0)(2i+1), M s y m b l a y e r = M s y m b ( 0 ) / 2 M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 2 Msymblayer=Msymb(0)/2 |
3 | 1 | x ( 0 ) ( i ) = d ( 0 ) ( 3 i ) x ( 1 ) ( i ) = d ( 0 ) ( 3 i + 1 ) x ( 2 ) ( i ) = d ( 0 ) ( 3 i + 2 ) \begin{array}{l}{x^{(0)}(i)=d^{(0)}(3 i)} \\ {x^{(1)}(i)=d^{(0)}(3 i+1)} \\ {x^{(2)}(i)=d^{(0)}(3 i+2)}\end{array} x(0)(i)=d(0)(3i)x(1)(i)=d(0)(3i+1)x(2)(i)=d(0)(3i+2), M s y m b l a y e r = M s y m b ( 0 ) / 3 M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 3 Msymblayer=Msymb(0)/3 |
4 | 1 | x ( 0 ) ( i ) = d ( 0 ) ( 4 i ) x ( 1 ) ( i ) = d ( 0 ) ( 4 i + 1 ) x ( 2 ) ( i ) = d ( 0 ) ( 4 i + 2 ) x ( 3 ) ( i ) = d ( 0 ) ( 4 i + 3 ) \begin{array}{l}{x^{(0)}(i)=d^{(0)}(4 i)} \\ {x^{(1)}(i)=d^{(0)}(4 i+1)} \\ {x^{(2)}(i)=d^{(0)}(4 i+2)} \\ {x^{(3)}(i)=d^{(0)}(4 i+3)}\end{array} x(0)(i)=d(0)(4i)x(1)(i)=d(0)(4i+1)x(2)(i)=d(0)(4i+2)x(3)(i)=d(0)(4i+3), M s y m b l a y e r = M s y m b ( 0 ) / 4 M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 4 Msymblayer=Msymb(0)/4 |
5 | 2 | x ( 0 ) ( i ) = d ( 0 ) ( 2 i ) x ( 1 ) ( i ) = d ( 0 ) ( 2 i + 1 ) x ( 2 ) ( i ) = d ( 1 ) ( 3 i ) x ( 3 ) ( i ) = d ( 1 ) ( 3 i + 1 ) x ( 4 ) ( i ) = d ( 1 ) ( 3 i + 2 ) \begin{array}{l}{x^{(0)}(i)=d^{(0)}(2 i)} \\ {x^{(1)}(i)=d^{(0)}(2 i+1)} \\ {x^{(2)}(i)=d^{(1)}(3 i)} \\ {x^{(3)}(i)=d^{(1)}(3 i+1)} \\ {x^{(4)}(i)=d^{(1)}(3 i+2)}\end{array} x(0)(i)=d(0)(2i)x(1)(i)=d(0)(2i+1)x(2)(i)=d(1)(3i)x(3)(i)=d(1)(3i+1)x(4)(i)=d(1)(3i+2), M s y m b l a y e r = M s y m b ( 0 ) / 2 = M s y m b ( 1 ) / 3 M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 2=M_{\mathrm{symb}}^{(1)} / 3 Msymblayer=Msymb(0)/2=Msymb(1)/3 |
6 | 2 | x ( 0 ) ( i ) = d ( 0 ) ( 3 i ) x ( 1 ) ( i ) = d ( 0 ) ( 3 i + 1 ) x ( 2 ) ( i ) = d ( 0 ) ( 3 i + 2 ) x ( 3 ) ( i ) = d ( 1 ) ( 3 i ) x ( 4 ) ( i ) = d ( 1 ) ( 3 i + 1 ) x ( 5 ) ( i ) = d ( 1 ) ( 3 i + 2 ) \begin{array}{l}{x^{(0)}(i)=d^{(0)}(3 i)} \\ {x^{(1)}(i)=d^{(0)}(3 i+1)} \\ {x^{(2)}(i)=d^{(0)}(3 i+2)} \\ {x^{(3)}(i)=d^{(1)}(3 i)} \\ {x^{(4)}(i)=d^{(1)}(3 i+1)} \\ {x^{(5)}(i)=d^{(1)}(3 i+2)}\end{array} x(0)(i)=d(0)(3i)x(1)(i)=d(0)(3i+1)x(2)(i)=d(0)(3i+2)x(3)(i)=d(1)(3i)x(4)(i)=d(1)(3i+1)x(5)(i)=d(1)(3i+2), M s y m b l a y e r = M s y m b ( 0 ) / 3 = M s y m b ( 1 ) / 3 M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 3=M_{\mathrm{symb}}^{(1)} / 3 Msymblayer=Msymb(0)/3=Msymb(1)/3 |
7 | 2 | x ( 0 ) ( i ) = d ( 0 ) ( 3 i ) x ( 1 ) ( i ) = d ( 0 ) ( 3 i + 1 ) x ( 2 ) ( i ) = d ( 0 ) ( 3 i + 2 ) x ( 3 ) ( i ) = d ( 1 ) ( 4 i ) x ( 4 ) ( i ) = d ( 1 ) ( 4 i + 1 ) x ( 5 ) ( i ) = d ( 1 ) ( 4 i + 2 ) x ( 6 ) ( i ) = d ( 1 ) ( 4 i + 3 ) \begin{array}{l}{x^{(0)}(i)=d^{(0)}(3 i)} \\ {x^{(1)}(i)=d^{(0)}(3 i+1)} \\ {x^{(2)}(i)=d^{(0)}(3 i+2)} \\ {x^{(3)}(i)=d^{(1)}(4 i)} \\ {x^{(4)}(i)=d^{(1)}(4 i+1)} \\ {x^{(5)}(i)=d^{(1)}(4 i+2)} \\ {x^{(6)}(i)=d^{(1)}(4 i+3)}\end{array} x(0)(i)=d(0)(3i)x(1)(i)=d(0)(3i+1)x(2)(i)=d(0)(3i+2)x(3)(i)=d(1)(4i)x(4)(i)=d(1)(4i+1)x(5)(i)=d(1)(4i+2)x(6)(i)=d(1)(4i+3), M s y m b l a y e r = M s y m b ( 0 ) / 3 = M s y m b ( 1 ) / 4 M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 3=M_{\mathrm{symb}}^{(1)} / 4 Msymblayer=Msymb(0)/3=Msymb(1)/4 |
8 | 2 | x ( 0 ) ( i ) = d ( 0 ) ( 4 i ) x ( 1 ) ( i ) = d ( 0 ) ( 4 i + 1 ) x ( 2 ) ( i ) = d ( 0 ) ( 4 i + 2 ) x ( 3 ) ( i ) = d ( 0 ) ( 4 i + 3 ) x ( 3 ) ( i ) = d ( 0 ) ( 4 i ) x ( 4 ) ( i ) = d ( 1 ) ( 4 i + 1 ) x ( 6 ) ( i ) = d ( 1 ) ( 4 i + 2 ) x ( 7 ) ( i ) = d ( 1 ) ( 4 i + 3 ) \begin{array}{l}{x^{(0)}(i)=d^{(0)}(4 i)} \\ {x^{(1)}(i)=d^{(0)}(4 i+1)} \\ {x^{(2)}(i)=d^{(0)}(4 i+2)} \\ {x^{(3)}(i)=d^{(0)}(4 i+3)} \\ {x^{(3)}(i)=d^{(0)}(4 i)} \\ {x^{(4)}(i)=d^{(1)}(4 i+1)} \\ {x^{(6)}(i)=d^{(1)}(4 i+2)} \\ {x^{(7)}(i)=d^{(1)}(4 i+3)}\end{array} x(0)(i)=d(0)(4i)x(1)(i)=d(0)(4i+1)x(2)(i)=d(0)(4i+2)x(3)(i)=d(0)(4i+3)x(3)(i)=d(0)(4i)x(4)(i)=d(1)(4i+1)x(6)(i)=d(1)(4i+2)x(7)(i)=d(1)(4i+3), M s y m b l a y e r = M s y m b ( 0 ) / 4 = M s y m b ( 1 ) / 4 M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 4=M_{\mathrm{symb}}^{(1)} / 4 Msymblayer=Msymb(0)/4=Msymb(1)/4 |