多尺度样本的产生

多尺度样本的产生

由于目标检测的目标尺度可能相差很大,因此我们需要尽可能产生不同尺寸的region proposals,常见的有两种方法,加上本文(faster R-CNN中的RPN网络)的一共三种方法:

 

多尺度样本的产生_第1张图片

  • 图像金字塔:通过将图像放缩到不同的尺寸,然后提取特征去做。有点类似于RCNN中的实现方式,显然这样需要为每一个尺寸重复提取卷积特征,成本很高。
  • 卷积特征金字塔:先对于图像提取卷积特征,然后将卷积特征放缩到不同的尺寸。类似于SPP的实现方式。在SPP中我们也看到,这里面的图像也需要放缩到几种尺寸,产生多尺度结果。
  • anchor金字塔:通过不同尺度的anchor在卷积特征上滑窗相当于是anchor金字塔,不需要图像有多个尺寸,仅需要有多个尺寸的anchor就好了。文章使用了3种尺度以及3种比例。

 

多尺度样本的产生_第2张图片

感觉区域大小很重要,3尺寸的1比例与3比例相差很小,因为比例准不准没关系,后面还有回归层去微调呢,但是如果尺寸不够那回归层就无能为力了。

你可能感兴趣的:(多尺度样本的产生)