ARMv8的架构继承以往ARMv7与之前处理器技术的基础,除了现有的16/32bit的Thumb2指令支持外,也向前兼容现有的A32(ARM 32bit)指令集,基于64bit的AArch64架构,除了新增A64(ARM 64bit)指令集外,也扩充了现有的A32(ARM 32bit)和T32(Thumb2 32bit)指令集,另外还新增加了CRYPTO(加密)模块支持。
ARMv8新特点:支持64位
以前的ARM:32位
详细区别参考:https://blog.csdn.net/forever_2015/article/details/50285865
以下只说重要变化:
1.ARMv7之前的实现
ARMv7之前的处理器可以工作在7种工作模式(称作processor mode)下,
1、用户模式(Usr):用于正常执行程序;
2、快速中断模式(FIQ):用于高速数据传输;
3、外部中断模式(IRQ):用于通常的中断处理;
4、管理模式(svc):操作系统使用的保护模式;
5、数据访问终止模式(abt):当数据或指令预取终止时进入该模式,可用于虚拟存储以及存储保护;
6、系统模式(sys):运行具有特权的操作系统任务;
7、未定义指令中止模式(und):当未定义的指令执行时进入该模式,可用于支持硬件;
之所以存在不同的模式,主要有2个方面的考虑:
1)不同的处理器模式,有不同的硬件访问权限,称作privilege level。
主要有2个level,privilege和non-privilege。其中只有User模式属于non-privilege level,其它均是privilege level。
安全起见,大多数时候,软件都运行在User mode。一旦需要其它操作,则需要切换到相应的privilege模式下。这是最原始、最朴素的安全思想,当然,只防君子,不防小人。
2)这些处理器模式,除User模式外,其它模式基本上和各类异常一一对应。而不同的模式,都有一些自己独有的寄存器,例如R13(SP)、R14(LR)等等,可以使模式切换过程(也是异常处理过程)更为高效、便利。
2.ARMv7-a的实现
ARMv7-a基本保留了之前的设计,不同之处,将privilege level命名了,称作PL0和PL1(也许您猜到了,后来出现了PL2,用于虚拟化扩展(Virtualization Extension)。
另外,增加了一个模式:Monitor用于security扩展(为支持建立可信赖的执行环境(trust execution environment, TEE)而引入等扩展。)变成8种模式,即增加了Monitor。
还有一个功能:virtualization扩展。
3.ARMv8-a的实现
可能ARMv8-a的设计者觉得之前的设计有些啰嗦,就把processor mode的概念去掉(或者说淡化)了,取而代之的是4个固定的Exception level,简称EL0-EL3。同时,也淡化了privilege level的概念。Exception level本身就已经包好了privilege的信息,即ELn的privilege随着n的增大而增大。类似地,可以将EL0归属于non-privilege level,EL1/2/3属于privilege level。
EL0是user模式
EL1是内核(EL0的user和EL1是6种模式合起来是32位ARM的7种工作模式)
EL2是HYP(虚拟化扩展)
EL3是Monitor(用于安全/非安全世界的切换)
所有说以前的多种工作模式都变成了EL0~EL3
这些Exception level的现实意义是(如下图,先忽略Secure model有关的内容)正在上传…重新上传取消
ARMv8-a Exception level有关的说明如下:
1)首先需要注意的是,AArch64中,已经没有User、SVC、ABT等处理器模式的概念,但ARMv8需要向前兼容,在AArch32中,就把这些处理器模式map到了4个Exception level。
2)Application位于特权等级最低的EL0,Guest OS(Linux kernel、window等)位于EL1,提供虚拟化支持的Hypervisor位于EL2(可以不实现),提供Security支持的Seurity Monitor位于EL3(可以不实现)。
3)只有在异常发生时(或者异常处理返回时),才能切换Exception level(这也是Exception level的命名原因,为了处理异常)。当异常发生时,有两种选择,停留在当前的EL,或者跳转到更高的EL,EL不能降级。同样,异常处理返回时,也有两种选择,停留在当前EL,或者调到更低的EL
4.security model
ARMv8-a的security模型基本沿用了ARMv7 security extension的思路,主要目的保护一些安全应用的数据,例如支付等。它不同于privilege level等软件逻辑上的保护,而是一种物理上的区隔,即不同security状态下,可以访问的物理内存是不同的。
ARMv8-a架构有两个security state(参考上面图片),Security和non-Security。主要的功效是物理地址的区隔,以及一些system control寄存器的访问控制:
在Security状态下,处理器可以访问所有的Secure physical address space以及Non-secure physical address space;
在Non-security状态下,只能访问Non-secure physical address space,且不能访问Secure system control resources。