Linux 阻塞IO和非阻塞IO

  • 1 什么是I/O
  • 2 同步IO模型
    • 2.1 阻塞IO模型
    • 2.2 非阻塞IO模型
    • 2.3 信号驱动IO模型
    • 2.4 IO复用模型
    • 2.5 小结
  • 3 异步IO模型
  • 4 五种IO模型对比

 

1 什么是I/O

程序是由数据+指令构成的,运行程序的过程可以分成下面这几步:

1.将代码加载到内存中,逐条运行内存中的代码
2.在运行代码的过程中,可能需要对文件的读写,即将文件输入(Input)到内存和将代码执行结果产生的文件输出(Output)到外设(网络、磁盘)的过程。那么这个数据交换的过程就是I/O

IO中的阻塞、非阻塞、同步、异步概念分析
通过上面这篇文章你可以知道同步、异步、阻塞、非阻塞这些概念,并且可以了解到java中I/O编程的三种模型,阻塞IO(BIO)、非阻塞IO(NIO)和异步IO(AIO)。Java中NIO和AIO都是通过epoll来实现的。

我们常说的IO,指的是文件的输入和输出,但是在操作系统层面是如何定义IO的呢?到底什么样的过程可以叫做是一次IO呢?

拿一次磁盘文件读取为例,我们要读取的文件是存储在磁盘上的,我们的目的是把它读取到内存中。可以把这个步骤简化成把数据从硬件(硬盘)中读取到用户空间中。

其实真正的文件读取还涉及到缓存等细节,这里就不展开讲述了。关于用户空间、内核空间以及硬件等的关系如果读者不理解的话,可以通过钓鱼的例子理解。

钓鱼的时候,刚开始鱼是在鱼塘里面的,我们的钓鱼动作的最终结束标志是鱼从鱼塘中被我们钓上来,放入鱼篓中。

这里面的鱼塘就可以映射成磁盘,中间过渡的鱼钩可以映射成内核空间,最终放鱼的鱼篓可以映射成用户空间。一次完整的钓鱼(IO)操作,是鱼(文件)从鱼塘(硬盘)中转移(拷贝)到鱼篓(用户空间)的过程

在Linux(UNIX)操作系统中,共有五种IO模型,分别是:

阻塞IO模型、

非阻塞IO模型、

IO复用模型、

信号驱动IO模型

以及异步IO模型。

Linux 阻塞IO和非阻塞IO_第1张图片

2 同步IO模型

2.1 阻塞IO模型

我们钓鱼的时候,有一种方式比较惬意,比较轻松,那就是我们坐在鱼竿面前,这个过程中我们什么也不做,双手一直把着鱼竿,就静静的等着鱼儿咬钩。一旦手上感受到鱼的力道,就把鱼钓起来放入鱼篓中。然后再钓下一条鱼。

映射到Linux操作系统中,这就是一种最简单的IO模型,即阻塞IO。 阻塞 I/O 是最简单的 I/O 模型,一般表现为进程或线程等待某个条件,如果条件不满足,则一直等下去。条件满足,则进行下一步操作。

(简单来说:阻塞:当资源不够用的时候,应用程序就会挂起,当程序可用的时候,唤醒应用程序,打开文件使用open,默认是阻塞式打开。阻塞访问的最大好处就是文件不可用的时候程序进行了休眠,这样就可以把CPU的资源是方释放出来。但是当设备文件可以操作的时候就必须唤醒进程,一般在中断函数中完成唤醒工作。

linux 中提供了wait queue(等待队列)来实现阻塞进程的唤醒工作。如果要使用对列,就用在创建出初始化地时候创建等待队列头。

                     非阻塞:当资源不可用的时候,应用程序轮询查看,或放弃,会有超时处理机制)

                             Linux 阻塞IO和非阻塞IO_第2张图片

 

       


等待队列:1、wait_queue_head_t

                         2.  等待队列项 :

                               wait_queue_t:表示队列项

                         3.添加队列项到等待队列头

                         4.移除等待队列项

                            资源可用的时候使用 remove_wait_queue函数移除

                        5.唤醒:wakeup



这里写图片描述

应用进程通过系统调用 recvfrom 接收数据,但由于内核还未准备好数据报,应用进程就会阻塞住,直到内核准备好数据报,recvfrom 完成数据报复制工作,应用进程才能结束阻塞状态。

这种钓鱼方式相对来说比较简单,对于钓鱼的人来说,不需要什么特制的鱼竿,拿一根够长的木棍就可以悠闲的开始钓鱼了(实现简单)。缺点就是比较耗费时间,比较适合那种对鱼的需求量小的情况(并发低,时效性要求低)。

2.2 非阻塞IO模型

我们钓鱼的时候,在等待鱼儿咬钩的过程中,我们可以做点别的事情,比如玩一把王者荣耀、看一集《延禧攻略》等等。但是,我们要时不时的去看一下鱼竿,一旦发现有鱼儿上钩了,就把鱼钓上来。

映射到Linux操作系统中,这就是非阻塞的IO模型。应用进程与内核交互,目的未达到之前,不再一味的等着,而是直接返回。然后通过轮询的方式,不停的去问内核数据准备有没有准备好。如果某一次轮询发现数据已经准备好了,那就把数据拷贝到用户空间中。
这里写图片描述
应用进程通过 recvfrom 调用不停的去和内核交互,直到内核准备好数据。如果没有准备好,内核会返回error,应用进程在得到error后,过一段时间再发送recvfrom请求。在两次发送请求的时间段,进程可以先做别的事情。

这种方式钓鱼,和阻塞IO比,所使用的工具没有什么变化,但是钓鱼的时候可以做些其他事情,增加时间的利用率。

2.3 信号驱动IO模型

我们钓鱼的时候,为了避免自己一遍一遍的去查看鱼竿,我们可以给鱼竿安装一个报警器。当有鱼儿咬钩的时候立刻报警。然后我们再收到报警后,去把鱼钓起来。

映射到Linux操作系统中,这就是信号驱动IO。应用进程在读取文件时通知内核,如果某个 socket 的某个事件发生时,请向我发一个信号。在收到信号后,信号对应的处理函数会进行后续处理。
这里写图片描述
应用进程预先向内核注册一个信号处理函数,然后用户进程返回,并且不阻塞,当内核数据准备就绪时会发送一个信号给进程,用户进程便在信号处理函数中开始把数据拷贝的用户空间中。

这种方式钓鱼,和前几种相比,所使用的工具有了一些变化,需要有一些定制(实现复杂)。但是钓鱼的人就可以在鱼儿咬钩之前彻底做别的事儿去了。等着报警器响就行了。

2.4 IO复用模型

生产中经常会用到的一种模型
我们钓鱼的时候,为了保证可以最短的时间钓到最多的鱼,我们同一时间摆放多个鱼竿,同时钓鱼。然后哪个鱼竿有鱼儿咬钩了,我们就把哪个鱼竿上面的鱼钓起来。

映射到Linux操作系统中,这就是IO复用模型。多个进程的IO可以注册到同一个管道上,这个管道会统一和内核进行交互。当管道中的某一个请求需要的数据准备好之后,进程再把对应的数据拷贝到用户空间中。

这里写图片描述

IO多路转接是多了一个select函数,多个进程的IO可以注册到同一个select上,当用户进程调用该select,select会监听所有注册好的IO,如果所有被监听的IO需要的数据都没有准备好时,select调用进程会阻塞。当任意一个IO所需的数据准备好之后,select调用就会返回,然后进程在通过recvfrom来进行数据拷贝。

这里的IO复用模型,并没有向内核注册信号处理函数,所以,他并不是非阻塞的。进程在发出select后,要等到select监听的所有IO操作中至少有一个需要的数据准备好,才会有返回,并且也需要再次发送请求去进行文件的拷贝。

这种方式的钓鱼,通过增加鱼竿的方式,可以有效的提升效率。

2.5 小结

我们说阻塞IO模型、非阻塞IO模型、IO复用模型和信号驱动IO模型都是同步的IO模型。原因是因为,无论以上那种模型,真正的数据拷贝过程,都是同步进行的。

信号驱动难道不是异步的么? 信号驱动,内核是在数据准备好之后通知进程,然后进程再通过recvfrom操作进行数据拷贝。我们可以认为数据准备阶段是异步的,但是,数据拷贝操作是同步的。所以,整个IO过程也不能认为是异步的。

我们把钓鱼过程,可以拆分为两个步骤:1、鱼咬钩(数据准备)。2、把鱼钓起来放进鱼篓里(数据拷贝)。无论以上提到的哪种钓鱼方式,在第二步,都是需要人主动去做的,并不是鱼竿自己完成的。所以,这个钓鱼过程其实还是同步进行的。

3 异步IO模型

我们钓鱼的时候,采用一种高科技钓鱼竿,即全自动钓鱼竿。可以自动感应鱼上钩,自动收竿,更厉害的可以自动把鱼放进鱼篓里。然后,通知我们鱼已经钓到了,他就继续去钓下一条鱼去了。

映射到Linux操作系统中,这就是异步IO模型。应用进程把IO请求传给内核后,完全由内核去操作文件拷贝。内核完成相关操作后,会发信号告诉应用进程本次IO已经完成。
这里写图片描述

用户进程发起aio_read操作之后,给内核传递描述符、缓冲区指针、缓冲区大小等,告诉内核当整个操作完成时,如何通知进程,然后就立刻去做其他事情了。当内核收到aio_read后,会立刻返回,然后内核开始等待数据准备,数据准备好以后,直接把数据拷贝到用户控件,然后再通知进程本次IO已经完成。

这种方式的钓鱼,无疑是最省事儿的。啥都不需要管,只需要交给鱼竿就可以了。

4 五种IO模型对比

这里写图片描述

你可能感兴趣的:(Linux)