目录
【前言】:
一,面向对象程序设计
二,标准库
三,ANSI 标准
四,C++ 环境设置
五,基本的内置类型
六,变量声明与定义
七,左值(Lvalues)和右值(Rvalues)
八,变量作用域
九,常量
十,修饰符
十一, 类型限定符
十二,存储类
十三:函数参数
十四,引用 vs 指针
在有C语言基础上去学习C++,众所周知,C++继承于C语言,最明显的不同是它可以面对对象进行程序设计。
这里主要记录一些与C语言不同或者有些忘记的知识点。
学习资料:C++ 教程 | 菜鸟教程 https://www.runoob.com/cplusplus/cpp-tutorial.html
Hello World!镇楼
#include
using namespace std;
int main()
{
cout << "Hello, world!" << endl;
return 0;
}
C++ 完全支持面向对象的程序设计,包括面向对象开发的四大特性:
标准的 C++ 由三个重要部分组成:
ANSI 标准是为了确保 C++ 的便携性 —— 您所编写的代码在 Mac、UNIX、Windows、Alpha 计算机上都能通过编译。
由于 ANSI 标准已稳定使用了很长的时间,所有主要的 C++ 编译器的制造商都支持 ANSI 标准。
ANSI C是C语言标准,汽车行业静态测试会采用 MISRA C标准。
参考:C语言有哪些标准?-知乎 https://zhuanlan.zhihu.com/p/26619516
参考:MISRA C_百度百科 https://baike.baidu.com/item/MISRA%20C/6211399?fr=aladdin
基本条件:文本编辑器和 C++ 编译器。
GNU 的 gcc 编译器适合于 C 和 C++ ,程序 g++ 是将 gcc 默认语言设为 C++ 的一个特殊的版本,链接时它自动使用 C++ 标准库而不用 C 标准库。
类型 | 关键字 |
---|---|
布尔型 | bool |
字符型 | char |
整型 | int |
浮点型 | float |
双浮点型 | double |
无类型 | void |
宽字符型(short int) | wchar_t |
一些基本类型可以使用一个或多个类型修饰符进行修饰:
extern int d = 3, f = 5; // d 和 f 的声明
int d = 3, f = 5; // 定义并初始化 d 和 f
byte z = 22; // 定义并初始化 z
char x = 'x'; // 变量 x 的值为 'x'
使用多个文件且只在其中一个文件中定义变量时(定义变量的文件在程序连接时是可用的),变量声明就显得非常有用。可以使用 extern关键字在任何地方声明一个变量。虽然可以在 C++ 程序中多次声明一个变量,但变量只能在某个文件、函数或代码块中被定义一次。
C++ 中有两种类型的表达式:
作用域是程序的一个区域,一般来说有三个地方可以定义变量:
在函数或一个代码块内部声明的变量,称为局部变量。
在函数参数的定义中声明的变量,称为形式参数。
在所有函数外部声明的变量,称为全局变量。
在程序中,局部变量和全局变量的名称可以相同,但是在函数内,局部变量的值会覆盖全局变量的值。
当局部变量被定义时,系统不会对其初始化,您必须自行对其初始化。定义全局变量时,系统会自动初始化为下列值:
数据类型 | 初始化默认值 |
---|---|
int | 0 |
char | '\0' |
float | 0 |
double | 0 |
pointer | NULL |
85 // 十进制
0213 // 八进制
0x4b // 十六进制
30 // 整数
30u // 无符号整数
30l // 长整数
30ul // 无符号长整数
3.14159 // 合法的
314159E-5L // 合法的
510E // 非法的:不完整的指数
210f // 非法的:没有小数或指数
.e55 // 非法的:缺少整数或分数
在 C++ 中,有两种简单的定义常量的方式:
#define LENGTH 10
const int LENGTH = 10;
C++ 允许在 char、int 和 double 数据类型前放置修饰符。修饰符用于改变基本类型的含义,它更能满足各种情境的需求。
限定符 | 含义 |
---|---|
const | const 类型的对象在程序执行期间不能被修改改变。 |
volatile | 修饰符 volatile 告诉编译器不需要优化volatile声明的变量,让程序可以直接从内存中读取变量。对于一般的变量编译器会对变量进行优化,将内存中的变量值放在寄存器中以加快读写效率。 |
restrict | 由 restrict 修饰的指针是唯一一种访问它所指向的对象的方式。只有 C99 增加了新的类型限定符 restrict。 |
存储类定义 C++ 程序中变量/函数的范围(可见性)和生命周期。这些说明符放置在它们所修饰的类型之前。下面列出 C++ 程序中可用的存储类:
从 C++ 17 开始,auto 关键字不再是 C++ 存储类说明符,且 register 关键字被弃用。
auto 存储类
自 C++ 11 以来,auto 关键字用于两种情况:声明变量时根据初始化表达式自动推断该变量的类型、声明函数时函数返回值的占位符。
C++98标准中auto关键字用于自动变量的声明,但由于使用极少且多余,在C++11中已删除这一用法。
根据初始化表达式自动推断被声明的变量的类型,如:
auto f=3.14; //double auto s("hello"); //const char* auto z = new auto(9); // int* auto x1 = 5, x2 = 5.0, x3='r';//错误,必须是初始化为同一类型
register 存储类
register 存储类用于定义存储在寄存器中而不是 RAM 中的局部变量。这意味着变量的最大尺寸等于寄存器的大小(通常是一个词),且不能对它应用一元的 '&' 运算符(因为它没有内存位置)。
{ register int miles; }
寄存器只用于需要快速访问的变量,比如计数器。还应注意的是,定义 'register' 并不意味着变量将被存储在寄存器中,它意味着变量可能存储在寄存器中,这取决于硬件和实现的限制。
static 存储类
static 存储类指示编译器在程序的生命周期内保持局部变量的存在,而不需要在每次它进入和离开作用域时进行创建和销毁。因此,使用 static 修饰局部变量可以在函数调用之间保持局部变量的值。
static 修饰符也可以应用于全局变量。当 static 修饰全局变量时,会使变量的作用域限制在声明它的文件内。
在 C++ 中,当 static 用在类数据成员上时,会导致仅有一个该成员的副本被类的所有对象共享。
#include
// 函数声明 void func(void); static int count = 10; /* 全局变量 */ int main() { while(count--) { func(); } return 0; } // 函数定义 void func( void ) { static int i = 5; // 局部静态变量 i++; std::cout << "变量 i 为 " << i ; std::cout << " , 变量 count 为 " << count << std::endl; } 当上面的代码被编译和执行时,它会产生下列结果:
变量 i 为 6 , 变量 count 为 9 变量 i 为 7 , 变量 count 为 8 变量 i 为 8 , 变量 count 为 7 变量 i 为 9 , 变量 count 为 6 变量 i 为 10 , 变量 count 为 5 变量 i 为 11 , 变量 count 为 4 变量 i 为 12 , 变量 count 为 3 变量 i 为 13 , 变量 count 为 2 变量 i 为 14 , 变量 count 为 1 变量 i 为 15 , 变量 count 为 0
extern 存储类
extern 存储类用于提供一个全局变量的引用,全局变量对所有的程序文件都是可见的。当您使用 'extern' 时,对于无法初始化的变量,会把变量名指向一个之前定义过的存储位置。
当您有多个文件且定义了一个可以在其他文件中使用的全局变量或函数时,可以在其他文件中使用 extern 来得到已定义的变量或函数的引用。可以这么理解,extern 是用来在另一个文件中声明一个全局变量或函数。
extern 修饰符通常用于当有两个或多个文件共享相同的全局变量或函数的时候,如下所示:
第一个文件:main.cpp
#include
int count ; extern void write_extern(); int main() { count = 5; write_extern(); } 第二个文件:support.cpp
#include
extern int count; void write_extern(void) { std::cout << "Count is " << count << std::endl; } 在这里,第二个文件中的 extern 关键字用于声明已经在第一个文件 main.cpp 中定义的 count。现在 ,编译这两个文件,如下所示:
$ g++ main.cpp support.cpp -o write
这会产生 write 可执行程序,尝试执行 write,它会产生下列结果:
$ ./write Count is 5
mutable 存储类
mutable 说明符仅适用于类的对象,这将在本教程的最后进行讲解。它允许对象的成员替代常量。也就是说,mutable 成员可以通过 const 成员函数修改。
thread_local 存储类
使用 thread_local 说明符声明的变量仅可在它在其上创建的线程上访问。 变量在创建线程时创建,并在销毁线程时销毁。 每个线程都有其自己的变量副本。
thread_local 说明符可以与 static 或 extern 合并。
可以将 thread_local 仅应用于数据声明和定义,thread_local 不能用于函数声明或定义。
以下演示了可以被声明为 thread_local 的变量:
thread_local int x; // 命名空间下的全局变量 class X { static thread_local std::string s; // 类的static成员变量 }; static thread_local std::string X::s; // X::s 是需要定义的 void foo() { thread_local std::vector
v; // 本地变量 }
如果函数要使用参数,则必须声明接受参数值的变量。这些变量称为函数的形式参数。
形式参数就像函数内的其他局部变量,在进入函数时被创建,退出函数时被销毁。
当调用函数时,有三种向函数传递参数的方式:
调用类型 | 描述 |
---|---|
传值调用 | 该方法把参数的实际值赋值给函数的形式参数。在这种情况下,修改函数内的形式参数对实际参数没有影响。 |
指针调用 | 该方法把参数的地址赋值给形式参数。在函数内,该地址用于访问调用中要用到的实际参数。这意味着,修改形式参数会影响实际参数。 |
引用调用 | 该方法把参数的引用赋值给形式参数。在函数内,该引用用于访问调用中要用到的实际参数。这意味着,修改形式参数会影响实际参数。 |
引用很容易与指针混淆,它们之间有三个主要的不同: