树莓派检测运动目标并辨识类别代码备忘

rgbhistogram.py

import cv2
class RGBHistogram:
    def __init__(self, bins):
        self.bins = bins

    def describe(self, image, mask = None):
        image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        hist = cv2.calcHist([image], [0, 1, 2],
        mask, self.bins, [0, 256, 0, 256, 0, 256])
        cv2.normalize(hist, hist)
        return hist.flatten()

classifier.py

from __future__ import print_function
from rgbhistogram import RGBHistogram
from sklearn.preprocessing import LabelEncoder
from sklearn import svm
###from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.externals import joblib
import numpy as np
import argparse
import glob
import cv2

ap = argparse.ArgumentParser()
ap.add_argument("-i", "--images", required = True,
help = "path to the image dataset")
ap.add_argument("-m", "--masks", required = True,
help = "path to the image masks")
args = vars(ap.parse_args())
print(args)

imagePaths = sorted(glob.glob(args["images"] + "/*.jpg"))
maskPaths = sorted(glob.glob(args["masks"] + "/*.jpg"))
data = []
target = []

#print(imagePaths)

desc = RGBHistogram([16, 16, 16])

for (imagePath, maskPath) in zip(imagePaths, maskPaths):
    image = cv2.imread(imagePath)
    if image.ndim==2:
        image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
    features = desc.describe(image)
    data.append(features)
    target.append('A')
    print(imagePath)

    mask = cv2.imread(maskPath)
    if mask.ndim==2:
        mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
    features = desc.describe(mask)
    data.append(features)
    target.append('B')
    print(maskPath)
    #print(target)

targetNames = np.unique(target)
le = LabelEncoder()
target = le.fit_transform(target)

(trainData, testData, trainTarget, testTarget) = train_test_split(data, target,test_size = 0.1, random_state = 1)
model = smv.SVC(gamma=0.5, C=1.)
###model = RandomForestClassifier(n_estimators = 25, random_state = 42)
model.fit(trainData, trainTarget)
joblib.dump(model, "svm_model.model")

model = joblib.load("svm_model.model")

print(classification_report(testTarget, model.predict(testData),target_names = targetNames))

for i in np.random.choice(np.arange(0, len(maskPaths)), 10):
    imagePath = maskPaths[i]
    image = cv2.imread(imagePath)
    #mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
    features = desc.describe(image)
    type = le.inverse_transform(model.predict([features]))[0]
    print(imagePath)
    print("I think this type is a {}".format(type.upper()))
    cv2.imshow("image", image)
    cv2.waitKey(0)

执行方式:
python classify.py –image train_data /A –mask train_data /B
准备训练数据如下:
A类数据:
树莓派检测运动目标并辨识类别代码备忘_第1张图片
B类数据:
树莓派检测运动目标并辨识类别代码备忘_第2张图片
执行训练结果如下:
树莓派检测运动目标并辨识类别代码备忘_第3张图片

detectCamera.py

from sklearn.externals import joblib
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from rgbhistogram import RGBHistogram
import argparse
import datetime
import imutils
import time
import numpy as np
import cv2


# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the video file")
ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size")
args = vars(ap.parse_args())


model = joblib.load("svm_model.model")
target = []
target.append('A')
target.append('B')
targetNames = np.unique(target)
le = LabelEncoder()
target = le.fit_transform(target)
desc = RGBHistogram([16, 16, 16])


# if the video argument is None, then we are reading from webcam
if args.get("video", None) is None:
    camera = cv2.VideoCapture(0)
    time.sleep(0.25)

# otherwise, we are reading from a video file
else:
    camera = cv2.VideoCapture(args["video"])

# initialize the first frame in the video stream
firstFrame = None
frameCount = 0
# loop over the frames of the video
while True:
    # grab the current frame and initialize the occupied/unoccupied
    # text
    #d1 = datetime.datetime.now()
    (grabbed, org_frame) = camera.read()

    #d = datetime.datetime.now() - d1
    #print("#consuming %dms" % (d.microseconds/1000))
    text = "Unoccupied"

    # if the frame could not be grabbed, then we have reached the end
    # of the video
    if not grabbed:
        break

    frameCount = frameCount+1
    if frameCount%10 > 0:
            continue

        d1 = datetime.datetime.now()
    # resize the frame, convert it to grayscale, and blur it
    #frame = imutils.resize(frame, width=640)
    frame = cv2.resize(org_frame,(320,240),interpolation=cv2.INTER_LINEAR)
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray, (7, 7), 0)

    # if the first frame is None, initialize it
    if firstFrame is None:
        firstFrame = gray
        continue
    # compute the absolute difference between the current frame and
    # first frame
    frameDelta = cv2.absdiff(firstFrame, gray)
    thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]

    # dilate the thresholded image to fill in holes, then find contours
    # on thresholded image
    thresh = cv2.dilate(thresh, None, iterations=2)
    (_, cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        area = 0;

    # loop over the contours
    for c in cnts:
        # if the contour is too small, ignore it
        if cv2.contourArea(c) < args["min_area"]:
            continue

        # compute the bounding box for the contour, draw it on the frame,
        # and update the text

        (x, y, w, h) = cv2.boundingRect(c)
        if area < w * h:
                    area = w * h
                    (bx,by,bw,bh) = (x,y,w,h);                    

        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
        text = "Occupied"

    # draw the text and timestamp on the frame
    #cv2.putText(frame, "Room Status: {}".format(text), (10, 20),
    #   cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
    #cv2.putText(frame, datetime.datetime.now().strftime("%Y-%m-%d %I:%M:%S"),
    #   (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1)

        if area > 0:
            print("x %d, y %d, w %d, h %d" % (bx, by, bw,by))
            cropImg = frame[by:by+bh, bx:bx+bw]
            features = desc.describe(cropImg)
            type = le.inverse_transform(model.predict([features]))[0]
            print("I think this is a {}".format(type.upper()))
            cv2.imwrite(datetime.datetime.now().strftime("captured_imgs/sub_%Y%m%d_%I%M%S_img.jpg"),cropImg)
    d = datetime.datetime.now() - d1

    print("consuming %dms" % (d.microseconds/1000))
    if cmp(text,"Occupied") == 0 :
            cv2.imwrite(datetime.datetime.now().strftime("captured_imgs/%Y%m%d_%I%M%S_img.jpg"),frame)
    # show the frame and record if the user presses a key
    cv2.imshow("Security Feed", frame)
    #cv2.imshow("Thresh", thresh)
    #cv2.imshow("Frame Delta", frameDelta)
    key = cv2.waitKey(1) & 0xFF

    # if the `q` key is pressed, break from the lop
    if key == ord("q"):
        break

# cleanup the camera and close any open windows
camera.release()
cv2.destroyAllWindows()

执行方式:

python detectCamera.py

测试效果如下:
树莓派检测运动目标并辨识类别代码备忘_第4张图片
参考:
1. https://www.pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-with-python-and-opencv/
2. http://opencv.org/new-opencv-books.html
3. Practical Python and OpenCV, Case Studies, 3rd Edition.pdf

你可能感兴趣的:(编程相关)