Intel Caffe int8 推理校准工具

西风东渐,青出于蓝。各位看官可移步 BUG1989/caffe-int8-convert-tools。另推荐一篇原理介绍:TensorRT(5)-INT8校准原理。

Intel int8 校准的代码源自 Ristretto,虽然没有 8-bit Inference with TensorRT 和 [MXNET-133] Model Quantization with Calibration 中使用 KL散度(Kullback-Leibler Divergence) 的功能高级,但仍可作为 Caffe 用户的福音。待 Tencent/ncnn
int8 成熟之后,边缘计算的速度又可再获提升。

QuantizationParameter

// Message for layers with reduced word with arithmetic
message QuantizationParameter{
  enum Precision {
    DYNAMIC_FIXED_POINT = 0;
  }
  optional Precision precision = 1 [default = DYNAMIC_FIXED_POINT];
  enum Rounding {
    NEAREST = 0;
  }
  optional Rounding rounding_scheme = 2 [default = NEAREST];
  // Dynamic fixed point word width
  optional uint32 bw_layer_in = 3 [default = 32];
  optional uint32 bw_layer_out = 4 [default = 32];
  optional uint32 bw_params = 5 [default = 32];
  repeated int32 fl_layer_in = 6;
  repeated int32 fl_layer_out = 7;
  repeated int32 fl_params = 8;
  repeated float scale_in = 20;
  repeated float scale_out = 21;
  repeated float scale_params = 22;
}

calibrator.py

Created with Raphaël 2.2.0 calibrator model,weights check_existence setup_env accuracy_blob_name_parser generate_sample get_the_accuracy tuning_quantized_topology quantized_prototxt End

解析参数。

if __name__ == '__main__':
    usage_string = 'Usage: 1.Build the caffe\n ' \
                    '2.cd /path/to/caffe/scripts\n ' \
                    '3.python calibrator.py ' \
                    ' -r /path/to/caffe/build ' \
                    ' -w pre-trained-fp32 weights ' \
                    ' -m typology ' \
                    ' -i iterations ' \
                    ' -l acceptable accuracy loss value, the default value is 0.01 stands for one percent' \
                    ' -d 1(0 means classification while 1 means detection, the default value is 0' \
                    ' -n blob name which means accuracy' \
                    ' -c scaling mode, the default value is single' \
                    ' -s sampling iterations'

    parser = argparse.ArgumentParser(add_help=False)
    parser.add_argument('-h', '--help', action='help', help=usage_string)

    parser.add_argument('-i', '--iterations', action='store', dest='iterations', default=10,
                        help='equal to the number to complete one epoch.')

    parser.add_argument('-w', '--weights', action='store', dest='weights', default='',
                        help='pre-trained-fp32-weights.')

    parser.add_argument('-m', '--model', action='store', dest='model', default='',
                        help='topology definition prototxt.')

    parser.add_argument('-l', '--accuracy_loss', action='store', dest='loss', default=0.01,
                        help='the acceptable accuracy loss that raised by 8-Bit quantization, '
                             'default value is 0.01(one percent).')

    parser.add_argument('-d', '--detection', action='store', dest='is_detection', default=0,
                        help='0 for classification while 1 for detection, default value is 0.')

    parser.add_argument('-r', '--root', action='store', dest='root', default='',
                        help='caffe build path')

    parser.add_argument('-n', '--blob_name', action='store', dest='blob_name', default='',
                        help='top blob name which stands for accuracy')

    parser.add_argument('-c', '--weights_channel', action='store', dest='scaling_mode', default='single',
                        help='the scaling mode for weights')
    
    parser.add_argument('-s', '--sampling_iterations', action='store', dest='sampling_iterations', default=10,
                        help='iteration number of sampling, the default value is 10.')

    params = parser.parse_args()

如果未指定 caffe 的根路径则退出。

    if not check_existence(params.root):
        print 'Please check the {} existence.'.format(params.root)
        sys.exit(-1)

在系统中加入 pycaffe 的路径,导入 caffe。

    pycaffe_path = os.path.abspath(os.path.dirname(os.path.abspath(params.root))) + os.path.sep + 'python'
    if not check_existence(pycaffe_path):
        print "Please check the pycaffe existence.Suggest to rebuild pycaffe via 'make pycaffe'"
    sys.path.insert(0, pycaffe_path)
    import caffe
    from caffe.proto import caffe_pb2

设置迭代次数。

    try:
        user_input_iterations = int(params.iterations)
    except:
        print 'Set the iterations to the default value 1000'
        user_input_iterations = 1000
    else:
        if user_input_iterations < 1:
            print 'Invalid iterations!The value should be larger than zero.'
            sys.exit(-1)

设置采样次数。

    try:
        user_sampling_iteration = int(params.sampling_iterations)
    except:
        print 'Set the sampling iteration to the default value 10'
        user_sampling_iteration = 10
    else:
        if user_sampling_iteration < 1:
            print 'Invalid sampling iteration!The value should be larger than zero.'
            sys.exit(-1)

设置权重的缩放模式。

    if params.scaling_mode != 'multipe' and params.scaling_mode != 'single':
        user_scaling_mode = 'single'
    else:
        user_scaling_mode = params.scaling_mode

设置损失的容忍度。

    try:
        toleration = float(params.loss)
        if toleration >= 1 or toleration < 0:
            toleration = 0.01
    except:
        print 'Set the toleration to 1%.'
        toleration = 0.01

设置检测标志。

    try:
        detection_flag = 1 if int(params.is_detection) == 1 else 0
    except:
        print 'Set the test type to classification.'
        detection_flag = 0

检查模型 prototxt 是否存在。

    model = os.path.abspath(params.model)
    if not check_existence(model):
        print 'Please check model: {} existence.'.format(model)
        sys.exit(-1)

检查权重是否存在。

    user_input_weights = os.path.abspath(params.weights)
    if not check_existence(user_input_weights):
        print 'Please check weights: {} existence.'.format(user_input_weights)
        sys.exit(-1)

检查tools路径下的采样程序是否存在。

    sample = os.path.abspath(params.root + os.path.sep + 'tools/sample')
    if not check_existence(sample):
        print 'Please check sample: {} existence.'.format(sample)
        sys.exit(-1)

检查 caffe 可执行程序是否存在。

    caffe_bin_path = os.path.abspath(params.root + os.path.sep + 'tools/caffe')
    if not check_existence(caffe_bin_path):
        print 'Please check model/weights/sample existence.'
        sys.exit(-1)

setup_env() 改变当前工作目录到指定的路径,设置 caffe 模式为 cpu。

 setup_env()

如果未指定target_blob_name且不是检测,则调用accuracy_blob_name_parser函数。
对于检查任务,需要指定用于预期精度或检测输出值的 blob 名称。
accuracy_blob_name_parser函数读取模型描述文件,并试图找到Accuracy层的输出。

    target_blob_name = params.blob_name
    if not target_blob_name and not detection_flag:
        target_blob_name = accuracy_blob_name_parser(model)

如果未指定target_blob_name或模型描述文件中没有target_blob_name,则退出。

    if not target_blob_name or not check_blob_name_existence(model, target_blob_name):
        print 'Please specify valid blob name and rerun the script.'
        sys.exit(-1)

str.rsplit使用sep作为分隔符字符串,返回字符串中单词的列表。
生成一个新的网络描述文件名和权重文件名。
generate_sample通过 shell 脚本的形式调用 sample 程序。

    quantized_prototxt = model.rsplit('.')[0] + '_quantized.prototxt'
    quantized_weights = user_input_weights.rsplit('.')[0] + '_quantized.caffemodel'
    enable_power_of_2 = 0
    print 'Sampling...'
    generate_sample(sample, model, user_input_weights, quantized_prototxt, detection_flag, user_scaling_mode,
                    user_sampling_iteration, 100 * toleration, enable_power_of_2)
    print 'Sampling done'

get_the_accuracy 通过 shell 脚本的形式调用 test 程序获得模型准确率。

    print 'Generating the FP32 accuracy...'
    top_1 = get_the_accuracy(caffe_bin_path, model, user_input_weights, user_input_iterations, detection_flag,
                             target_blob_name)
    print 'FP32 accuracy is: {}'.format(top_1)

tuning_quantized_topology 从前往后取消卷积层的量化,直至准确率满足要求。

    tuning_quantized_topology(top_1, quantized_prototxt, caffe_bin_path, user_input_weights, user_input_iterations,
                              enable_power_of_2, toleration, detection_flag, target_blob_name)

    print 'Updated prototxt {} is generated.'.format(quantized_prototxt)

setup_env()

os.chdir() 方法用于改变当前工作目录到指定的路径。
os.path.dirname(path) 返回路径名路径的目录名称。这是通过将路径传递给函数split()返回的对中的第一个元素。

def setup_env():
    os.chdir(os.path.dirname(os.path.abspath(params.root)))
    caffe.set_mode_cpu()

accuracy_blob_name_parser

read_prototxt通过google.protobuf.text_format解析模型描述文件,得到网络的定义。

    net = read_prototxt(prototxt)
    if not net:
        print 'Please check the model prototxt integrity.'
        sys.exit(-1)

尝试寻找网络的Accuracy层,如果该层有accuracy_param参数则设置 top_k;否则将输出存储到res

    res = {}
    for i in net.layer:
        if i.type == 'Accuracy':
            if i.HasField('accuracy_param'):
                res[i.accuracy_param.top_k] = i.top[0]
            else:
                res[1] = i.top[0]

res的键进行排序,返回第一个键的值。

    return res[sorted(res.keys())[0]] if res else ''

generate_sample

os.system 在子 shell 中执行命令(字符串)。这是通过调用标准C 函数system()来实现的,并且具有相同的限制。对sys.stdin等的更改不会反映在已执行命令的环境中。
Intel Caffe int8 推理校准工具_第1张图片

def generate_sample(sample_path, input_model, weights,
                    quantized_model, detection, scaling_mode, iterations=1, error_margin=1, power=0):
    cmd = '{0} quantize -model {1} -weights {2} -model_quantized {3} -iterations {4} -error_margin {5} -power {6}' \
          ' -scaling {7} -trimming_mode dynamic_fixed_point'.format(sample_path, input_model, weights, quantized_model,
                                                                    iterations, error_margin, power, scaling_mode)
    if detection:
        cmd += ' --detection=1'

    os.system(cmd)

get_the_accuracy

在子 shell 中调用 test。tee命令将数据重定向到文件 。

    output_log_name = 'calibrator_log.txt'
    cmd = '{} test -model {} -weights {} -iterations {}'.format(caffe_bin, model_def, model_weights, iterations)
    if detection:
        cmd += ' -detection'
    cmd += ' 2>&1|tee {}'.format(output_log_name)

    os.system(cmd)

tuning_quantized_topology

如果使用定点,调用 transform_convolutions。
get_compiled_net通过 shell 脚本的形式调用 test 程序得到输出文件。

    if is_floating_point == 0:
        print 'Updating quantization parameter...'

        transform_convolutions(prototxt, get_compiled_net(caffe_bin, prototxt, model_weights, detection))

获取当前的准确率。

 current_top1_accuracy = get_the_accuracy(caffe_bin, prototxt, model_weights, iterations, detection, blob_name)

执行remove_top_quantized_parameter直到准确率损失满足要求。
remove_top_quantized_parameter从前往后,每次清除一层量化卷积的参数值。

    while abs(current_top1_accuracy - base_top1_accuracy) >= accuracy_loss:
        print 'Tuning... '
        print abs(current_top1_accuracy - base_top1_accuracy)
        remove_top_quantized_parameter(prototxt)
        current_top1_accuracy = get_the_accuracy(caffe_bin, prototxt, model_weights, iterations, detection, blob_name)

transform_convolutions

将文件中的信息合并到net中。

    net = caffe_pb2.NetParameter()
    with open(model_path) as f:
        s = f.read()
        txtf.Merge(s, net)

get_fusion_conv_names返回输入大于1的卷积层名及其第2个输入。fusion 是 intel/ideep 的一种优化。

    fusion_layer = get_fusion_conv_names(compiled_model_path)
    new_net = copy.deepcopy(net)

获得卷积层名及其索引。

 convolution_layers = [(value, index) for index, value in enumerate(net.layer) if value.type == 'Convolution']
    interesting_layers = ['ReLU']
    skip_layers = ['Convolution', 'Eltwise', 'Concat']

filter_fusion_layers 过滤已在fusion_layer中的层。

    u8_max = 255
    s8_max = 127
    u8_layers = filter_fusion_layers(net, fusion_layer, convolution_layers)

get_all_bottom_layers 获得输出给 Relu 的层?
get_all_top_layers 获得输入接 Relu 的层?

    for (l, index) in convolution_layers:
        outputwith_relu = get_all_bottom_layers(net.layer[index].top[0], net, index + 1, skip_layers,
                                                interesting_layers)
        conv_relu_flag = check_relu_existence(net, index,
                                              convolution_layers[convolution_layers.index((l, index)) + 1][1]
                                              if (l, index) != convolution_layers[-1]
                                              else len(net.layer), [i[0] for i in fusion_layer])
        inputwith_relu = get_all_top_layers(l, net, index, skip_layers, interesting_layers)

对于层输出,卷积后接 Relu 的层使用 u8 ?
Quantization::QuantizeNet() 获得输入输出及参数的数值范围,这里计算其缩放系数。系数四舍五入到小数点后两位。

        for si in range(0, len(new_net.layer[index].quantization_param.scale_out)):
            if len(outputwith_relu) > 0 or l.name in u8_layers or conv_relu_flag:  # u8
                new_net.layer[index].quantization_param.scale_out[si] = round(u8_max / new_net.layer[index].
                                                                              quantization_param.scale_out[si], 2)
            else:  # s8
                new_net.layer[index].quantization_param.scale_out[si] = round(s8_max / new_net.layer[index].
                                                                              quantization_param.scale_out[si], 2)

对于层输入,如果其接 Relu 层或者其为卷积,则使用 u8,否则不进行量化。

        for si in range(0, len(new_net.layer[index].quantization_param.scale_in)):
            if len(inputwith_relu) > 0 or l.type == 'Convolution':  # u8
                new_net.layer[index].quantization_param.scale_in[si] = round(u8_max / new_net.layer[index].
                                                                             quantization_param.scale_in[si], 2)
            else:
                new_net.layer[index].ClearField('quantization_param')
                continue

层参数使用 s8。

        for si in range(0, len(new_net.layer[index].quantization_param.scale_params)):
            new_net.layer[index].quantization_param.scale_params[si] = round(s8_max / new_net.layer[index].
                                                                             quantization_param.scale_params[si], 2)

将网络描述保存为文件。

    with open(model_path, 'w') as f:
        f.write(str(new_net))

filter_fusion_layers

filter_fusion_layers 同时输入原网络和量化网络的卷积层。

如果输入的fusion_layerconv_layer为空,则返回。

    if not fusion_layer or not conv_layer:
        return []

get_all_bottom_layers 获取所有以特定 blob 为输入的层。
如果没有以该层为输入,则加入到output_with_relu_layer

    interesting_layers = ['ReLU']
    skip_layers = ['Convolution', 'Eltwise', 'Concat']
    output_with_relu_layer = [(l.name, net.layer[index].top[0]) for l, index in conv_layer
                              if len(get_all_bottom_layers(net.layer[index].top[0], net, index + 1,
                                                           skip_layers, interesting_layers)) == 0]

删除已在fusion_layer中的层。

    output_without_dict = {v: k for (k, v) in output_with_relu_layer}
    for layer_name, top_name in fusion_layer:
        if top_name in output_without_dict.keys():
            del output_without_dict[top_name]

    return output_without_dict.values()

get_fusion_conv_names

读取量化后网络(quantized_prototxt) test 输出的日志文件,返回输入大于1的卷积层层名和第2个 blob。

    compiled_net = caffe_pb2.NetParameter()
    with open(compiled_model) as f:
        s = f.read()
        txtf.Merge(s, compiled_net)
    return [(layer.name, layer.bottom[1]) for _, layer in enumerate(compiled_net.layer)
            if layer.type == 'Convolution' and len(layer.bottom) > 1]

get_all_bottom_layers

get_bottom_layers 获得从start层开始,以top_name为输入的层。
如果为空则中止。

    all_bottom_layers = []
    bottom_layers = get_bottom_layers(top_name, net, start)
    while True:
        if len(bottom_layers) == 0:
            break

对于这些层,去除属于skip_layers中类型的层,仅保留一个interesting_layers中的层,否则去除该层并追加以该层为输入的层。
感觉不如 if else 结构清晰。修改bottom_layers也会影响processed_layers

        processed_layers = bottom_layers  # sync bottom_layers change
        for (li, ln, lt) in processed_layers:
            if lt in skip_layers:
                bottom_layers.remove((li, ln, lt))
                continue
            if lt in interesting_layers:
                lp = (li, ln, lt)
                bottom_layers.remove(lp)
                if lp not in all_bottom_layers:
                    all_bottom_layers.append(lp)
                continue

            new_bottom_layers = get_bottom_layers(ln, net, li + 1)
            bottom_layers.remove((li, ln, lt))
            bottom_layers.extend(new_bottom_layers)

get_bottom_layers

获得从start层开始,以top_name为输入的层。

    bottom_layers = []
    for index, value in enumerate(net.layer[start:]):
        for sub_index, sub_value in enumerate(value.bottom):
            if sub_value == top_name:
                bottom_layers.append((index, value.name, value.type))

    return bottom_layers

get_all_top_layers

get_top_layers 返回输出为l层输入的层列表。

    all_top_layers = []
    top_layers = get_top_layers(l, net, end)
    while True:
        if len(top_layers) == 0:
            break

处理模式与 get_all_bottom_layers 相同。

        processed_layers = top_layers  # sync topLayers change
        for (li, ln, lt) in processed_layers:
            if lt in skip_layers:
                top_layers.remove((li, ln, lt))
                continue
            if lt in interesting_layers:
                lp = (li, ln, lt)
                top_layers.remove(lp)
                if lp not in all_top_layers:
                    all_top_layers.append(lp)
                continue

            new_top_layers = get_top_layers(net.layer[li], net, li)
            top_layers.remove((li, ln, lt))
            top_layers.extend(new_top_layers)

    return all_top_layers

get_top_layers

get_top_layers 从第end - 1层开始逆序遍历。
对于每一层,如果其输出是l层的输入,则添加到top_layers中。

    top_layers = []
    for layerIndex in range(0, end):
        reverse_layer_index = end - layerIndex - 1
        for blobIndex in range(0, len(net.layer[reverse_layer_index].top)):
            if net.layer[reverse_layer_index].top[blobIndex] in l.bottom:
                top_layers.append((reverse_layer_index, net.layer[reverse_layer_index].name,
                                   net.layer[reverse_layer_index].type))
    return top_layers

Quantization::QuantizeNet()

Created with Raphaël 2.2.0 QuantizeNet model_,weights_ CheckWritePermissions CopyTrainedLayersFrom RunForwardBatches Quantize2DynamicFixedPoint model_quantized_ End
  CheckWritePermissions(model_quantized_);

  float accuracy;
  Net<float>* net_test = new Net<float>(model_, caffe::TEST);
  net_test->CopyTrainedLayersFrom(weights_);
  RunForwardBatches(this->iterations_, net_test, &accuracy, true, this->score_number); // RangeInLayer during sampling
  delete net_test;

  // Do network quantization and scoring.
  if (trimming_mode_ == "dynamic_fixed_point") {
    Quantize2DynamicFixedPoint();
  } else {
    LOG(FATAL) << "Unknown trimming mode: " << trimming_mode_;
  }

Quantization::Quantize2DynamicFixedPoint()

找到动态定点数的整数长度。选择使得不发生饱和的整数长度。这种近似假定了一个无限长的小数部分。对于层激活,我们将整数长度减少一位。

对于每一层,如果采用幂表示,则计算出输入和输出的整型长度,否则保存输入和输出的幅值。
Net::RangeInLayers产生layer_names_的内容。

  vector<int> lens;
  vector<float> scales;
  for (int i = 0; i < layer_names_.size(); ++i) {
    if (this->power) {
      il_in_.push_back((int)ceil(log2(max_in_[i])));
      il_out_.push_back((int)ceil(log2(max_out_[i])));
    } else {
      scale_in_.push_back(max_in_[i]);
      scale_out_.push_back(max_out_[i]);
    }

如果缩放是"single"模式,根据最大参数计算长度,否则根据每个卷积核的最大参数计算出相应长度。

    if (this->scaling == "single") {
      if (this->power)
        lens.push_back((int)ceil(log2(max_params_[i][0])+1));
      else
        scales.push_back(max_params_[i][0]);
    } else {
      for (int j = 0; j < max_params_[i].size(); j++) {
        if (this->power)
          lens.push_back((int)ceil(log2(max_params_[i][j])+1));
        else
          scales.push_back(max_params_[i][j]+0.0);
      }
    }

获得参数的整型长度。

    if (this->power) {
      il_params_.push_back(lens);
      lens.clear();
    } else {
      scale_params_.push_back(scales);
      scales.clear();
    }
  }

输出日志信息。

  // Debug
  for (int k = 0; k < layer_names_.size(); ++k) {
    if (this->scaling != "single") {
      if (this->power)
        LOG(INFO) << "Layer " << layer_names_[k] << ", parameters channel=" << il_params_[k].size();
      else
        LOG(INFO) << "Layer " << layer_names_[k] << ", parameters channel=" << scale_params_[k].size();
    }

    if (this->power) {
      LOG(INFO) << "Integer length input=" << il_in_[k];
      LOG(INFO) << "Integer length output=" << il_out_[k];
    } else {
      LOG(INFO) << "Scale input=" << scale_in_[k];
      LOG(INFO) << "Scale output=" << scale_out_[k];
    }
   
    if (this->scaling == "single") {
      if (this->power)
        LOG(INFO) << "Integer length param=" << il_params_[k][0];
      else
        LOG(INFO) << "Scale param=" << scale_params_[k][0];
    } else {
      if (this->power){
        for (int j = 0; j < il_params_[k].size(); j++) {
          LOG(INFO) << "Integer length params[" << j << "]=" << il_params_[k][j];
        }
      } else{
        for (int j = 0; j < scale_params_[k].size(); j++) {
          LOG(INFO) << "Scale params[" << j << "]=" << scale_params_[k][j];
        }
      }
    }
  }

设置卷积参数及输入输出的位宽。

  // Choose bit-width for different network parts
  bw_conv_params_ = 8; 
  bw_out_ = 8;
  bw_in_ = bw_out_;

从网络描述文件读取参数,调用EditNetDescriptionDynamicFixedPoint函数,保存量化参数到文件。

  NetParameter param;
  // Score dynamic fixed point network.
  // This network combines dynamic fixed point parameters in convolutional and
  // inner product layers, as well as dynamic fixed point activations.
  caffe::ReadNetParamsFromTextFileOrDie(model_, &param);
  EditNetDescriptionDynamicFixedPoint(&param, "Convolution",
      "Parameters_and_Activations", bw_conv_params_, bw_in_,
      bw_out_);
  WriteProtoToTextFile(param, model_quantized_);

EditNetDescriptionDynamicFixedPoint

对于每一层,如果layer_quantize中有卷积层,且该层为卷积层。
std::string::npos为size_t的最大值。

  int index = 0;
  bool first_convolution = false;
  for (int i = 0; i < param->layer_size(); ++i) {
    // TODO: move first convolution check to transform script
    if (layer_quantize.find("Convolution") != string::npos &&
        param->layer(i).type().find("Convolution") != string::npos) {

若是第一个卷积层则跳过。第一个卷积不量化?

      if (!first_convolution) {
          first_convolution = true;
          continue;
      }

如果net_part有参数,设置层类型为卷积,设置卷积位宽。
如果是幂表示,获得小数部分位宽,否则设置缩放参数。
GetIntegerLengthParams 获得层参数在il_params_中的索引。
GetScaleParams 获得层参数在scale_params_中的索引。

      // quantize parameters
      if (net_part.find("Parameters") != string::npos) {
        LayerParameter* param_layer = param->mutable_layer(i);
        param_layer->set_type("Convolution");
        if (trimming_mode_ == "dynamic_fixed_point") {
          param_layer->mutable_quantization_param()->set_bw_params(bw_conv);
          if (this->power) {
            vector<int> vals = GetIntegerLengthParams(param->layer(i).name());
            for (int j = 0; j < vals.size(); j++) {
              vals[j] = bw_conv - vals[j];
              param_layer->mutable_quantization_param()->add_fl_params(vals[j]);
            }
          } else {
            vector<float> vals = GetScaleParams(param->layer(i).name());
            for (int j = 0; j < vals.size(); j++) {
              param_layer->mutable_quantization_param()->add_scale_params(vals[j]);
            }
          }
        }
      }

如果net_part,中有激活层,设置层类型为卷积,设置输入输出的位宽。

      // quantize activations
      if (net_part.find("Activations") != string::npos) {
        LayerParameter* param_layer = param->mutable_layer(i);
        param_layer->set_type("Convolution");
        if (trimming_mode_ == "dynamic_fixed_point") {
          param_layer->mutable_quantization_param()->set_bw_layer_in(bw_in);
          param_layer->mutable_quantization_param()->set_bw_layer_out(bw_out);
          if (this->power) {
            int val = GetIntegerLengthIn(param->layer(i).name());
            param_layer->mutable_quantization_param()->add_fl_layer_in(bw_in - val);
            val = GetIntegerLengthOut(param->layer(i).name());
            param_layer->mutable_quantization_param()->add_fl_layer_out(bw_out - val);
          } else {
            float val = GetScaleIn(param->layer(i).name());
            param_layer->mutable_quantization_param()->add_scale_in(val);
            val = GetScaleOut(param->layer(i).name());
            param_layer->mutable_quantization_param()->add_scale_out(val);
          }
        }
      }

设置层参数的精度类型。

      LayerParameter* param_layer = param->mutable_layer(i);
      if (trimming_mode_ == "dynamic_fixed_point") {
        param_layer->mutable_quantization_param()->set_precision(caffe::QuantizationParameter_Precision(0));
      } else {
        LOG(FATAL) << "Unknown trimming mode: " << trimming_mode_;
      }
      index++;
    }
  }

Net::RangeInLayers

如果layer_name为空,遍历layers_,找出卷积层并初始化layer_namemax_inmax_outmax_param

  // Initialize vector elements, if needed.
  if(layer_name->size()==0) {
    for (int layer_id = 0; layer_id < layers_.size(); ++layer_id) {
      if (strcmp(layers_[layer_id]->type(), "Convolution") == 0) {
        layer_name->push_back(this->layer_names()[layer_id]);
        max_in->push_back(0);
        max_out->push_back(0);
        if (scaling == "single") {
          max_param->push_back(vector<Dtype>(1, 0));
        }
        else {
          int param_shape = (&(*layers_[layer_id]->blobs()[0]))->shape(0);
          max_param->push_back(vector<Dtype>(param_shape, 0));
        }
      }
    }
  }

对于每个卷积层,调用 FindMax 函数获得第一个 bottom 和 top blob 的最大值。

  // Find maximal values.
  int index = 0;
  vector<Dtype> max_vals;
  for (int layer_id = 0; layer_id < layers_.size(); ++layer_id) {
    if (strcmp(layers_[layer_id]->type(), "Convolution") == 0) {
      max_vals = FindMax(bottom_vecs_[layer_id][0]);
      max_in->at(index) = std::max(max_in->at(index), max_vals.at(0)); 

      max_vals = FindMax(top_vecs_[layer_id][0]);
      max_out->at(index) = std::max(max_out->at(index), max_vals.at(0));

如果缩放模式为"single",找到参数的最大值,否则记录每个卷积核的最大值。

      // Consider the weights only, ignore the bias
      if (scaling == "single") {
        max_vals = FindMax(&(*layers_[layer_id]->blobs()[0]));
        max_param->at(index).at(0) = std::max(max_param->at(index).at(0), max_vals.at(0));
      } else {
        max_vals = FindMax(&(*layers_[layer_id]->blobs()[0]), false);
        for(int i = 0; i < max_vals.size(); ++i) 
          max_param->at(index).at(i) = std::max(max_param->at(index).at(i), max_vals.at(i));
      }
      index++;
    }
  }

Net::FindMax

获取 blob 数据。

  const Dtype* data = blob->cpu_data();
  int cnt = blob->count();
  vector<Dtype> max_vals;
  Dtype max_val = (Dtype)(-10);

如果 blob 为4维,通过循环遍历找出最大值。
channel表意不明。

  int index = 0;
  if(blob->shape().size() == 4) {
    if(is_single) {
      max_vals = vector<Dtype>(1, Dtype(-10));
      for (int i = 0; i < cnt; ++i) {
        max_val = std::max(max_val, (Dtype)fabs(data[i]));
      }
      max_vals.at(0) = max_val;
    } else { // output_channel * input_channel * kernel_height * kernel_width
      int height = blob->shape(2);
      int width = blob->shape(3);
      int channel = blob->shape(0);
      max_vals = vector<Dtype>(channel, Dtype(-10));
      int step = blob->shape(1) * height * width;
      for (int i = 0; i < cnt; ++i) {
        if((i + 1) % step == 0) {
          max_vals.at(index) = std::max(max_val, (Dtype)fabs(data[i]));
          ++index;
        } else {
          max_val = std::max(max_val, (Dtype)fabs(data[i]));
        }
      }
    }

处理 CHW 格式的数据。

  } else {
    if(is_single) {
      max_vals = vector<Dtype>(1, Dtype(-10));
      for (int i = 0; i < cnt; ++i) {
        max_val = std::max(max_val, (Dtype)fabs(data[i]));
      }
      max_vals.at(0) = max_val;
    } else { // output_channel * input_channel
      int channel = blob->shape(0);
      max_vals = vector<Dtype>(channel, Dtype(-10));
      int step = blob->shape(1);
      for (int i = 0; i < cnt; ++i) {
        if((i + 1) % step == 0) {
          max_vals.at(index) = std::max(max_val, (Dtype)fabs(data[i]));
          ++index;
        } else {
          max_val = std::max(max_val, (Dtype)fabs(data[i]));
        }
      }
    }
  }
  
  return max_vals;

Quantization::RunForwardBatches

初始化变量。使用网络描述文件中的输入。

  LOG(INFO) << "Running for " << iterations << " iterations.";
  vector<Blob<float>* > bottom_vec;
  vector<int> test_score_output_id;
  vector<float> test_score;
  float loss = 0;

对于每次迭代,统计各层卷积数值分布,记录损失值。

  for (int i = 0; i < iterations; ++i) {
    float iter_loss;
    // Do forward propagation.
    const vector<Blob<float>*>& result =
        caffe_net->Forward(bottom_vec, &iter_loss);
    // Find maximal values in network.
    if(do_stats) {
      caffe_net->RangeInLayers(&layer_names_, &max_in_, &max_out_, &max_params_, this->scaling);
    }
    // Keep track of network score over multiple batches.
    loss += iter_loss;

如果是检测,跳过后续步骤。

 if (this->detection) continue;

累加每次迭代的测试得分。

    int idx = 0;
    for (int j = 0; j < result.size(); ++j) {
      const float* result_vec = result[j]->cpu_data();
      for (int k = 0; k < result[j]->count(); ++k, ++idx) {
        const float score = result_vec[k];
        if (i == 0) {
          test_score.push_back(score);
          test_score_output_id.push_back(j);
        } else {
          test_score[idx] += score;
        }
      }
    }
    LOG(INFO) << "Iteration: " << i;
  }

计算损失均值。检测直接返回。

  loss /= iterations;
  LOG(INFO) << "Loss: " << loss;
  if (this->detection) return;

输出损失权重。

  for (int i = 0; i < test_score.size(); ++i) {
    const float loss_weight = caffe_net->blob_loss_weights()[
        caffe_net->output_blob_indices()[test_score_output_id[i]]];
    std::ostringstream loss_msg_stream;
    const float mean_score = test_score[i] / iterations;
    if (loss_weight) {
      loss_msg_stream << " (* " << loss_weight
                      << " = " << loss_weight * mean_score << " loss)";
    }
  }
  *accuracy = test_score[score_number] / iterations;

你可能感兴趣的:(DeepLearning,Caffe)