首先要声明一下,本篇博文是编译tensorflow r0.9,如果你是想跑tensorflow版本的facenet,因为最新的model是基于tensorflowr0.11编译的,所以不会运行成功。本文也是踩了这个坑,只编译成功了r0.9。
参看链接:http://www.yuthon.com/2016/12/04/Installation-of-TensorFlow-r0-11-on-TX1/
http://stackoverflow.com/questions/39783919/tensorflow-on-nvidia-tx1/
你需要尽可能的删除一切东西,否则如果在本机编译,空间会不够,包很多错误,要么就给板子加个固态硬盘,要么就在移动硬盘下编译。建议编译的过程在代理下进行,如果你想编译r0.11版本,可参考上边第一个链接,本人没成功。
删除一切能删的:
# get rid of liboffice, games, libvisionworks, perfkit, multimedia api, opencv4tegra, etc.
sudo apt-get purge libreoffice*
sudo apt-get purge aisleriot gnome-sudoku mahjongg ace-of-penguins gnomine gbrainy
sudo apt-get clean
sudo apt-get autoremove
rm -rf libvision*
rm -rf PerfKit*
# something along these lines; might be different for you
# delete all libvision-works and opencv4tegra stuff
cd var && rm -rf libopencv4tegra* && rm -rf libvision*
# I deleted practically everything. Almost as if I shouldn't have even installed JetPack in the first place
# delete all deb files, Firefox, chrome, all the stuff I really didn't need that was taking up memory.
# find big files and remove them assuming they're not important. Google is your friend.
find / -size +10M -ls
# install deps
cd ~
sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer
sudo apt-get install git zip unzip autoconf automake libtool curl zlib1g-dev maven swig bzip2
#build build protobuf 3.0.0-beta-2 jar
git clone https://github.com/google/protobuf.git
cd protobuf
# autogen.sh downloads broken gmock.zip in d5fb408d
git checkout master
./autogen.sh
git checkout d5fb408d
./configure --prefix=/usr
make -j 4
sudo make install
cd java
mvn package
#Get bazel version 0.2.1, it doesn't require gRPC
git clone https://github.com/bazelbuild/bazel.git
cd bazel
git checkout 0.2.1
cp /usr/bin/protoc third_party/protobuf/protoc-linux-arm32.exe
cp ../protobuf/java/target/protobuf-java-3.0.0-beta-2.jar third_party/protobuf/protobuf-java-3.0.0-beta-1.jar
--- a/src/main/java/com/google/devtools/build/lib/util/CPU.java
+++ b/src/main/java/com/google/devtools/build/lib/util/CPU.java
@@ -25,7 +25,7 @@ import java.util.Set;
public enum CPU {
X86_32("x86_32", ImmutableSet.of("i386", "i486", "i586", "i686", "i786", "x86")),
X86_64("x86_64", ImmutableSet.of("amd64", "x86_64", "x64")),
- ARM("arm", ImmutableSet.of("arm", "armv7l")),
+ ARM("arm", ImmutableSet.of("arm", "armv7l", "aarch64")),
UNKNOWN("unknown", ImmutableSet.of());
./compile.sh
git clone -b r0.9 https://github.com/tensorflow/tensorflow.git
./configure
# this will fail, but that's ok
bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
下载config,更新.cache:
cd ~
wget -O config.guess 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD'
wget -O config.sub 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD'
# below are commands Dwight Crowe ran, yours will vary depending on .cache details.
# look for '_bazel_ubuntu', 'farmhash_archive', and 'farmhash'
cp config.guess ./.cache/bazel/_bazel_ubuntu/742c01ff0765b098544431b60b1eed9f/external/farmhash_archive/farmhash-34c13ddfab0e35422f4c3979f360635a8c050260/config.guess
cp config.sub ./.cache/bazel/_bazel_ubuntu/742c01ff0765b098544431b60b1eed9f/external/farmhash_archive/farmhash-34c13ddfab0e35422f4c3979f360635a8c050260/config.sub
--- a/tensorflow/core/kernels/BUILD
+++ b/tensorflow/core/kernels/BUILD
@@ -985,7 +985,7 @@ tf_kernel_libraries(
"reduction_ops",
"segment_reduction_ops",
"sequence_ops",
- "sparse_matmul_op",
+ #DC "sparse_matmul_op",
],
deps = [
":bounds_check",
--- a/tensorflow/python/BUILD
+++ b/tensorflow/python/BUILD
@@ -1110,7 +1110,7 @@ medium_kernel_test_list = glob([
"kernel_tests/seq2seq_test.py",
"kernel_tests/slice_op_test.py",
"kernel_tests/sparse_ops_test.py",
- "kernel_tests/sparse_matmul_op_test.py",
+ #DC "kernel_tests/sparse_matmul_op_test.py",
"kernel_tests/sparse_tensor_dense_matmul_op_test.py",
])
--- a/tensorflow/core/kernels/cwise_op_gpu_select.cu.cc
+++ b/tensorflow/core/kernels/cwise_op_gpu_select.cu.cc
@@ -43,8 +43,14 @@ struct BatchSelectFunctor {
const int all_but_batch = then_flat_outer_dims.dimension(1);
#if !defined(EIGEN_HAS_INDEX_LIST)
- Eigen::array broadcast_dims{{ 1, all_but_batch }};
- Eigen::Tensor::Dimensions reshape_dims{{ batch, 1 }};
+ //DC Eigen::array broadcast_dims{{ 1, all_but_batch }};
+ Eigen::array broadcast_dims;
+ broadcast_dims[0] = 1;
+ broadcast_dims[1] = all_but_batch;
+ //DC Eigen::Tensor::Dimensions reshape_dims{{ batch, 1 }};
+ Eigen::Tensor::Dimensions reshape_dims;
+ reshape_dims[0] = batch;
+ reshape_dims[1] = 1;
#else
Eigen::IndexList, int> broadcast_dims;
broadcast_dims.set(1, all_but_batch);
--- a/tensorflow/core/kernels/sparse_tensor_dense_matmul_op_gpu.cu.cc
+++ b/tensorflow/core/kernels/sparse_tensor_dense_matmul_op_gpu.cu.cc
@@ -104,9 +104,17 @@ struct SparseTensorDenseMatMulFunctor {
int n = (ADJ_B) ? b.dimension(0) : b.dimension(1);
#if !defined(EIGEN_HAS_INDEX_LIST)
- Eigen::Tensor::Dimensions matrix_1_by_nnz{{ 1, nnz }};
- Eigen::array n_by_1{{ n, 1 }};
- Eigen::array reduce_on_rows{{ 0 }};
+ //DC Eigen::Tensor::Dimensions matrix_1_by_nnz{{ 1, nnz }};
+ Eigen::Tensor::Dimensions matrix_1_by_nnz;
+ matrix_1_by_nnz[0] = 1;
+ matrix_1_by_nnz[1] = nnz;
+ //DC Eigen::array n_by_1{{ n, 1 }};
+ Eigen::array n_by_1;
+ n_by_1[0] = n;
+ n_by_1[1] = 1;
+ //DC Eigen::array reduce_on_rows{{ 0 }};
+ Eigen::array reduce_on_rows;
+ reduce_on_rows[0] = 0;
#else
Eigen::IndexList, int> matrix_1_by_nnz;
matrix_1_by_nnz.set(1, nnz);
--- a/tensorflow/stream_executor/cuda/cuda_blas.cc
+++ b/tensorflow/stream_executor/cuda/cuda_blas.cc
@@ -25,6 +25,12 @@ limitations under the License.
#define EIGEN_HAS_CUDA_FP16
#endif
+#if CUDA_VERSION >= 8000
+#define SE_CUDA_DATA_HALF CUDA_R_16F
+#else
+#define SE_CUDA_DATA_HALF CUBLAS_DATA_HALF
+#endif
+
#include "tensorflow/stream_executor/cuda/cuda_blas.h"
#include
@@ -1680,10 +1686,10 @@ bool CUDABlas::DoBlasGemm(
return DoBlasInternal(
dynload::cublasSgemmEx, stream, true /* = pointer_mode_host */,
CUDABlasTranspose(transa), CUDABlasTranspose(transb), m, n, k, &alpha,
- CUDAMemory(a), CUBLAS_DATA_HALF, lda,
- CUDAMemory(b), CUBLAS_DATA_HALF, ldb,
+ CUDAMemory(a), SE_CUDA_DATA_HALF, lda,
+ CUDAMemory(b), SE_CUDA_DATA_HALF, ldb,
&beta,
- CUDAMemoryMutable(c), CUBLAS_DATA_HALF, ldc);
+ CUDAMemoryMutable(c), SE_CUDA_DATA_HALF, ldc);
#else
LOG(ERROR) << "fp16 sgemm is not implemented in this cuBLAS version "
<< "(need at least CUDA 7.5)";
--- a/tensorflow/stream_executor/cuda/cuda_gpu_executor.cc
+++ b/tensorflow/stream_executor/cuda/cuda_gpu_executor.cc
@@ -888,6 +888,9 @@ CudaContext* CUDAExecutor::cuda_context() { return context_; }
// For anything more complicated/prod-focused than this, you'll likely want to
// turn to gsys' topology modeling.
static int TryToReadNumaNode(const string &pci_bus_id, int device_ordinal) {
+ // DC - make this clever later. ARM has no NUMA node, just return 0
+ LOG(INFO) << "ARM has no NUMA node, hardcoding to return zero";
+ return 0;
#if defined(__APPLE__)
LOG(INFO) << "OS X does not support NUMA - returning NUMA node zero";
return 0;
编译:
bazel build -c opt --config=cuda --local_resources 2048,4.0,1.0 --verbose_resources //tensorflow/tools/pip_package:build_pip_package --jobs 4
安装:
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
# The name of the .whl file will depend on your platform.
sudo pip install /tmp/tensorflow_pkg/tensorflow-0.12.0rc0-py2-none-any.whl
下面是我编译好的tensorflow0.9版本:
链接: https://pan.baidu.com/s/1hrPd4FE 密码: qe5x
编译过程中可能会报错,多尝试几次,将jobs 换为3或4,编译过程中可能会报的错:
Error: unexpected EOF from Bazel server.
gcc: internal compiler error: Killed (program cc1plus)
这些都是因为内存不够,我是将deb全部删掉,在移动硬盘中编译,还碰到了cross_tool的错误,多换了几次jobs就成功了。
总之,这次的编译过程让我累死了,没啥收获。为了编译r0.11,还把0.9删了,结果0.9的安装包我还没保存,最后啥都没剩下。
点个赞咯,草稿快要写完时,没保存,火狐就崩了,又写了一遍,真倒霉,股市又因为加息的事大跌,虽然我两个月前就知道会这样,最近太忙,忘了卖,又亏惨了,我的人生啊!!!。。。。。
如果有人编译成功r0.11,请告诉下哈,本人不甘心。