版权声明:本文为博主原创文章,未经博主允许不得转载。
目录(?)[-]
首先声明两者所要实现的功能是一致的(将多维数组降位一维),两者的区别在于返回拷贝(copy)还是返回视图(view),numpy.flatten()返回一份拷贝,对拷贝所做的修改不会影响(reflects)原始矩阵,而numpy.ravel()返回的是视图(view,也颇有几分C/C++引用reference的意味),会影响(reflects)原始矩阵。
>>> x = np.array([[1, 2], [3, 4]])
>>> x
array([[1, 2],
[3, 4]])
>>> x.flatten()
array([1, 2, 3, 4])
>>> x.ravel()
array([1, 2, 3, 4])
两者默认均是行序优先
>>> x.flatten('F')
array([1, 3, 2, 4])
>>> x.ravel('F')
array([1, 3, 2, 4])
>>> x.reshape(-1)
array([1, 2, 3, 4])
>>> x.T.reshape(-1)
array([1, 3, 2, 4])
>>> x = np.array([[1, 2], [3, 4]])
>>> x.flatten()[1] = 100
>>> x
array([[1, 2],
[3, 4]]) # flatten:返回的是拷贝
>>> x.ravel()[1] = 100
>>> x
array([[ 1, 100],
[ 3, 4]])
[1] What is the difference between flatten and ravel functions in numpy?