在前面的篇章Android 9 Zygote进程启动源码分析指南中我们重点分析了zygote启动的流程,但是剩余了两个重点的知识点没有讲解其中之一就是Android system_server进程启动的完整流程,在本篇中我们将要揭开system_server的神秘面纱分析分析它究竟是怎么启动的。
SystemServer进程是zygote进程启动后,主动“分裂”的第一个进程。如果说zygote孵化了整个Android的Java世界,那么system_server进程就是它的左膀右臂一起掌管Android的Java世界。它负责启动大量的Android系统核心服务,其重要性不言而喻。一旦该进程崩溃,整个Android系统将重新启动。
SystemServer对Android意味着什么?这个答案是不言而喻的,它是Android Java世界的精神支柱,虽然Android的Java世界可以说由zygote孵化而来的,但是在我看来zygote也是一个甩手掌柜只管生,生完就不管了(有点像动物世界里的蜂王,当然我们男同袍不是的)。而system_server进程则是Android Java世界的核心管理者,为了Java世界的繁华提供着各种服务,事必亲力亲为(有点像动物世界的工蜂)。
正是由于zygote和system_server的关系如此密切,所以这两者之间任何一个发生异常,都会导致Android Java的崩溃(所有由Zygote孵化的Java进程都会被销毁,而SystemServer就是由Zygote孵化而来)。若Android Java真的崩溃了,那么Linux系统中的进程init会重新启动“两大支柱”以重建Android Java,也有可能陷入无限死循环启动不了这个就要根据实际情况看来了。
注意:本文演示的代码是Android P高通msm8953平台源码。其中涉及的源码路径如下:
frameworks//base/core/java/com/android/internal/os/ZygoteInit.java
frameworks/base/core/jni/com_android_internal_os_Zygote.cpp
frameworks/base/core/java/com/android/internal/os/Zygote.java
frameworks/base/core/jni/AndroidRuntime.cpp
frameworks/base/core/java/com/android/internal/os/RuntimeInit.java
frameworks/base/services/java/com/android/server/SystemServer.java
在正式开始源码前,先奉上system_server进程启动的整体流程图,这样有助于童靴们心里构建一个整体的流程图谱,这样就可以根据图谱再结合源码达到一一击破,逐个分析的功效。再说有图才有真相不是!
在前面的篇章Android 9 Zygote进程启动源码分析指南中我们知道当zygote进程进入到java世界后,在ZygoteInit.java中,将调用startSystemServer函数启动SystemServer进程,其关键代码是:
if (startSystemServer) {
Runnable r = forkSystemServer(abiList, socketName, zygoteServer);
// {@code r == null} in the parent (zygote) process, and {@code r != null} in the
// child (system_server) process.
if (r != null) {
r.run();
return;
}
}
我们重点关注forkSystemServer,大伙该上厕所的先上厕所,该喝水的先喝水内容比较多额。
该代码定义在ZygoteInit.java中
/**
* Prepare the arguments and forks for the system server process.
*
* Returns an {@code Runnable} that provides an entrypoint into system_server code in the
* child process, and {@code null} in the parent.
*/
private static Runnable forkSystemServer(String abiList, String socketName,
ZygoteServer zygoteServer) {
......
//参数准备,system_server进程启动的相关参数
String args[] = {
"--setuid=1000",
"--setgid=1000",
"--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1023,1024,1032,1065,3001,3002,3003,3006,3007,3009,3010",
"--capabilities=" + capabilities + "," + capabilities,
"--nice-name=system_server",
"--runtime-args",
"--target-sdk-version=" + VMRuntime.SDK_VERSION_CUR_DEVELOPMENT,
"com.android.server.SystemServer",
};
ZygoteConnection.Arguments parsedArgs = null;
int pid;
try {
//用于参数解析,生成目标格式
parsedArgs = new ZygoteConnection.Arguments(args);
ZygoteConnection.applyDebuggerSystemProperty(parsedArgs);
ZygoteConnection.applyInvokeWithSystemProperty(parsedArgs);
boolean profileSystemServer = SystemProperties.getBoolean(
"dalvik.vm.profilesystemserver", false);
if (profileSystemServer) {
parsedArgs.runtimeFlags |= Zygote.PROFILE_SYSTEM_SERVER;
}
/* Request to fork the system server process */
//重点来了,通过forkSystemServer来fork子进程,进程是system_server
pid = Zygote.forkSystemServer(
parsedArgs.uid, parsedArgs.gid,
parsedArgs.gids,
parsedArgs.runtimeFlags,
null,
parsedArgs.permittedCapabilities,
parsedArgs.effectiveCapabilities);
} catch (IllegalArgumentException ex) {
throw new RuntimeException(ex);
}
/* For child process */
if (pid == 0) {//如果是子进程
if (hasSecondZygote(abiList)) {//如果有SecondZygote进程需要启动,等待启动完成
waitForSecondaryZygote(socketName);
}
zygoteServer.closeServerSocket();//关闭zygote原有socket
return handleSystemServerProcess(parsedArgs);//处理system_server进程相关的事务
}
return null;
|
从上述源码我们可以看出,该代码的逻辑划分如下:
代码定义在Zygote.java中
public static int forkSystemServer(int uid, int gid, int[] gids, int runtimeFlags,
int[][] rlimits, long permittedCapabilities, long effectiveCapabilities) {
VM_HOOKS.preFork();//这个分支先不予分析
// Resets nice priority for zygote process.
resetNicePriority();
int pid = nativeForkSystemServer(
uid, gid, gids, runtimeFlags, rlimits, permittedCapabilities, effectiveCapabilities);
// Enable tracing as soon as we enter the system_server.
if (pid == 0) {
Trace.setTracingEnabled(true, runtimeFlags);
}
VM_HOOKS.postForkCommon();//先不予分析
return pid;
}
通过前面我们对zygote启动的流程分析我们可知Android系统的JNI函数绝大分布都是在androidRuntime.cpp中进行注册的,nativeForkSystemServer()本地方法也不例外。这里nativeForkSystemServer会调用com_android_internal_os_Zygote.cpp中的register_com_android_internal_os_Zygote()方法建立native方法的映射关系,所以接下来进入如下方法。
这里有一个小窍门,怎么找到Android系统中Java的本地方法对应的Jni所在文件呢,一般的规则如下:
1. 将Java类所在的包名中的.转换成_,譬如我们这里的Zygote所在包名为com.android.internal.os,转换后即为com_android_internal_os
2. 将上述转换后的字符串+"_"+Java类名.cpp,就是我们要找的Jni文件了,譬如我们这里的com_android_internal_os_Zygote.cpp
通过前面章节我们知道nativeForkSystemServer是一个本地方法,最终通过Jni调用到了com_android_internal_os_Zygote.cpp中的com_android_internal_os_Zygote_nativeForkSystemServer中,代码逻辑如下所示:
static jint com_android_internal_os_Zygote_nativeForkSystemServer(
JNIEnv* env, jclass, uid_t uid, gid_t gid, jintArray gids,
jint runtime_flags, jobjectArray rlimits, jlong permittedCapabilities,
jlong effectiveCapabilities) {
//划重点,fork子进程
pid_t pid = ForkAndSpecializeCommon(env, uid, gid, gids,
runtime_flags, rlimits,
permittedCapabilities, effectiveCapabilities,
MOUNT_EXTERNAL_DEFAULT, NULL, NULL, true, NULL,
NULL, false, NULL, NULL);
if (pid > 0) {
// The zygote process checks whether the child process has died or not.
ALOGI("System server process %d has been created", pid);
//pid大于0,在父进程中即在zygote进程中
//// 将子进程SystemServer的pid存在zygote进程的全局变量中
gSystemServerPid = pid;
// There is a slight window that the system server process has crashed
// but it went unnoticed because we haven't published its pid yet. So
// we recheck here just to make sure that all is well.
int status;
if (waitpid(pid, &status, WNOHANG) == pid) {
//如果system_server创建即夭折了,那么就重启zygote进程只得重新开始孵化了
ALOGE("System server process %d has died. Restarting Zygote!", pid);
RuntimeAbort(env, __LINE__, "System server process has died. Restarting Zygote!");
}
bool low_ram_device = GetBoolProperty("ro.config.low_ram", false);
bool per_app_memcg = GetBoolProperty("ro.config.per_app_memcg", low_ram_device);
if (per_app_memcg) {
// Assign system_server to the correct memory cgroup.
// Not all devices mount /dev/memcg so check for the file first
// to avoid unnecessarily printing errors and denials in the logs.
if (!access("/dev/memcg/system/tasks", F_OK) &&
!WriteStringToFile(StringPrintf("%d", pid), "/dev/memcg/system/tasks")) {
ALOGE("couldn't write %d to /dev/memcg/system/tasks", pid);
}
}
}
return pid;
}
通过上面的代码可以看到,当system_server创建如果夭折了的话,那么Android将不得不重启zygote进程了。但是需要注意的是,对于Android 5.0以上系统,有两个zygote进程,分别是zygote、zygote64两个进程,system_server的父进程,一般来说64位系统其父进程是zygote64进程(这个是参考gityuan的,不保证正确)。
这里提供一个小方法教大伙看系统中那些进程是由zygote64启动的那些是由zygote启动的,具体的步骤如下:
msm8953_64:/ # ps | grep zygote
root 756 1 2172472 83332 poll_sched 0000000000 S zygote64
root 757 1 1599292 71024 poll_sched 0000000000 S zygote
msm8953_64:/ # cd /proc/756
msm8953_64:/proc/756 # ls -ali | grep exe
407 lrwxrwxrwx 1 root root 0 1970-01-01 08:00 exe -> /system/bin/app_process64
msm8953_64:/proc/756 # cd /proc/757
msm8953_64:/proc/757 # ls -ali | grep exe
469 lrwxrwxrwx 1 root root 0 1970-01-01 08:00 exe -> /system/bin/app_process32
msm8953_64:/ # ps | grep 757
root 757 1 1599292 71024 poll_sched 00f39f06d4 S zygote
mediacodec 776 1 37576 7844 binder_thr 00ef66362c S media.codec
u0_a31 2300 757 1019548 44536 SyS_epoll_ 00f39f04e8 S com.xxx.pinyinime
system 2757 756 1588652 45852 SyS_epoll_ 7f7df5e8f0 S org.simalliance.openmobileapi.service
msm8953_64:/ # ps | grep 756
root 756 1 2172472 83332 poll_sched 7f7df5ea10 S zygote64
radio 790 1 93376 15756 hrtimer_na 7f961e9328 S /system/bin/rild
system 1438 756 2384124 134304 SyS_epoll_ 7f7df5e8f0 S system_server
u0_a12 1771 756 1655104 133292 SyS_epoll_ 7f7df5e8f0 S com.android.systemui
system 2026 756 1639448 65892 SyS_epoll_ 7f7df5e8f0 S com.android.settings
radio 2039 756 1639620 73844 SyS_epoll_ 7f7df5e8f0 S com.android.phone
该代码依然还是定义在com_android_internal_os_Zygote.cpp中,冗余细节有点多,我们这里只抓主要的,细节的现行放过。
// Utility routine to fork zygote and specialize the child process.
static pid_t ForkAndSpecializeCommon(JNIEnv* env, uid_t uid, gid_t gid, jintArray javaGids,
jint runtime_flags, jobjectArray javaRlimits,
jlong permittedCapabilities, jlong effectiveCapabilities,
jint mount_external,
jstring java_se_info, jstring java_se_name,
bool is_system_server, jintArray fdsToClose,
jintArray fdsToIgnore, bool is_child_zygote,
jstring instructionSet, jstring dataDir) {
SetSignalHandlers();//注册信号监听器
pid_t pid = fork();//这个是重点,system_server进程是在这里fork出来的
if (pid == 0) {//这里是system_server进程
......
// Clean up any descriptors which must be closed immediately
if (!DetachDescriptors(env, fdsToClose, &error_msg)) {//关闭并清除文件描述符
fail_fn(error_msg);
}
......
if (!is_system_server && getuid() == 0) {//对于非system_server子进程,则创建进程组
int rc = createProcessGroup(uid, getpid());
if (rc != 0) {
if (rc == -EROFS) {
ALOGW("createProcessGroup failed, kernel missing CONFIG_CGROUP_CPUACCT?");
} else {
ALOGE("createProcessGroup(%d, %d) failed: %s", uid, pid, strerror(-rc));
}
}
}
if (!SetGids(env, javaGids, &error_msg)) {//设置group,这个是在zygoteInit中传递过来的
fail_fn(error_msg);
}
if (!SetRLimits(env, javaRlimits, &error_msg)) {//设置资源limits
fail_fn(error_msg);
}
if (!SetCapabilities(permittedCapabilities, effectiveCapabilities, permittedCapabilities,
&error_msg)) {
fail_fn(error_msg);
}
if (!SetSchedulerPolicy(&error_msg)) {//设置调度策略
fail_fn(error_msg);
}
//selinxu安全上下文检查
rc = selinux_android_setcontext(uid, is_system_server, se_info_c_str, se_name_c_str);
if (rc == -1) {
fail_fn(CREATE_ERROR("selinux_android_setcontext(%d, %d, \"%s\", \"%s\") failed", uid,
is_system_server, se_info_c_str, se_name_c_str));
}
// Make it easier to debug audit logs by setting the main thread's name to the
// nice name rather than "app_process".
if (se_name_c_str == NULL && is_system_server) {
se_name_c_str = "system_server";
}
if (se_name_c_str != NULL) {
SetThreadName(se_name_c_str);//设置线程名,设置线程名,设置线程名为system_server
}
// Unset the SIGCHLD handler, but keep ignoring SIGHUP (rationale in SetSignalHandlers).
UnsetChldSignalHandler();//取消信号监听器
//这里调用的是zygote.callPostForkChildHooks()
env->CallStaticVoidMethod(gZygoteClass, gCallPostForkChildHooks, runtime_flags,
is_system_server, is_child_zygote, instructionSet);
}
else if (pid > 0) {//zygote进程
......
}
return pid;
}
这里可以看到ForkAndSpecializeCommon函数最终调用的是fork()函数创建新的进程,而fork创建进程采用的是COW(写时拷贝技术)这是linux创建进程的标准方法,会有两次return,对于pid==0为子进程的返回,对于pid>0为父进程的返回。
在文章的开篇我们说到,zygote进程和system_server几乎是同生共死,休戚相关的,那是怎么做到的呢?这里我们看到在zygote进程fork之前,调用SetSigChldHandler函数注册了一个子进程信号监听器。由于子进程共享父进程中的堆及栈信息,因此在子进程中也会有相应的信号处理器。为了避免该信号监听器对子进程的影响,可以看到在子进程中进行了UnsetSigChldHandler的操作。zygote进程和system_server同生共死的密码就在SetSigChldHandler中了。
该代码依然还是定义在com_android_internal_os_Zygote.cpp中,我们看看它究竟做了些什么什么操作!
static void SetSignalHandlers() {
struct sigaction sig_chld = {};
sig_chld.sa_handler = SigChldHandler;
if (sigaction(SIGCHLD, &sig_chld, NULL) < 0) {
ALOGW("Error setting SIGCHLD handler: %s", strerror(errno));
}
struct sigaction sig_hup = {};
sig_hup.sa_handler = SIG_IGN;
// 该信号监听器关注子进程结束,对应的处理函数为SigChldHandler
if (sigaction(SIGHUP, &sig_hup, NULL) < 0) {
ALOGW("Error setting SIGHUP handler: %s", strerror(errno));
}
}
这个代码并不神秘,在前面讲解init进程源码分析中也分析过类似的。在这里注册一个信号处理器,来监听子进程的死亡。当子进程死亡后,利用SigChldHandler进行操作。需要注意的是,zygote的信号监听器,关注的是zygote所有的子进程,而不只是SystemServer进程(每次创建一个新的进程时,zygote都会注册对应的监听器)。
让我们继续分析SigChldHandler看看它做了些什么工作
// This signal handler is for zygote mode, since the zygote must reap its children
static void SigChldHandler(int /*signal_number*/) {
pid_t pid;
int status;
// It's necessary to save and restore the errno during this function.
// Since errno is stored per thread, changing it here modifies the errno
// on the thread on which this signal handler executes. If a signal occurs
// between a call and an errno check, it's possible to get the errno set
// here.
// See b/23572286 for extra information.
int saved_errno = errno;
while ((pid = waitpid(-1, &status, WNOHANG)) > 0) {
// Log process-death status that we care about. In general it is
// not safe to call LOG(...) from a signal handler because of
// possible reentrancy. However, we know a priori that the
// current implementation of LOG() is safe to call from a SIGCHLD
// handler in the zygote process. If the LOG() implementation
// changes its locking strategy or its use of syscalls within the
// lazy-init critical section, its use here may become unsafe.
// 通过status判断子进程结束的原因,并打印相应的log
if (WIFEXITED(status)) {
ALOGI("Process %d exited cleanly (%d)", pid, WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
ALOGI("Process %d exited due to signal (%d)", pid, WTERMSIG(status));
if (WCOREDUMP(status)) {
ALOGI("Process %d dumped core.", pid);
}
}
// If the just-crashed process is the system_server, bring down zygote
// so that it is restarted by init and system server will be restarted
// from there.
if (pid == gSystemServerPid) {//而对于system_sever进程就特别处理了,看来是偏心长子啊
ALOGE("Exit zygote because system server (%d) has terminated", pid);
kill(getpid(), SIGKILL);
}
}
// Note that we shouldn't consider ECHILD an error because
// the secondary zygote might have no children left to wait for.
if (pid < 0 && errno != ECHILD) {
ALOGW("Zygote SIGCHLD error in waitpid: %s", strerror(errno));
}
errno = saved_errno;
}
看到这里大伙应该明白了,所有zygote的子进程中,zygote只关心了SystemServer的死活。当其它子进程crash时,zygote只打印了log信息(有点天要下雨娘要嫁人随他去的感觉)。看来我们的zygote是有点偏心长子啊。
对于system_server进程恢复默认信号处理,此时的我脑海中浮现了一个画面zygote进程对system_server说孩儿好好干,当爹的不会亏待你的。
// Sets the SIGCHLD handler back to default behavior in zygote children.
static void UnsetChldSignalHandler() {
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler = SIG_DFL;
if (sigaction(SIGCHLD, &sa, NULL) < 0) {
ALOGW("Error unsetting SIGCHLD handler: %s", strerror(errno));
}
}
到此system_server进程已完成了创建的所有工作,接下来开始了system_server进程的真正工作。在前面startSystemServer()方法中,zygote进程执行完forkSystemServer()后,新创建出来的system_server进程便进入handleSystemServerProcess()方法。
兜兜转转又回到了ZygoteInit.java中的handleSystemServerProcess方法中
if (pid == 0) {
if (hasSecondZygote(abiList)) {
waitForSecondaryZygote(socketName);
}
zygoteServer.closeServerSocket(); // 关闭从zygote进程那里继承下来server socket
return handleSystemServerProcess(parsedArgs);
}
private static Runnable handleSystemServerProcess(ZygoteConnection.Arguments parsedArgs) {
// set umask to 0077 so new files and directories will default to owner-only permissions.
Os.umask(S_IRWXG | S_IRWXO);
if (parsedArgs.niceName != null) {
Process.setArgV0(parsedArgs.niceName);//我们通过ps查看到的system_server进程名就是在这里设置的
}
final String systemServerClasspath = Os.getenv("SYSTEMSERVERCLASSPATH");
//加载SystemServer对应的文件并进行优化
if (systemServerClasspath != null) {
performSystemServerDexOpt(systemServerClasspath);//这个会在2.6章节中介绍
// Capturing profiles is only supported for debug or eng builds since selinux normally
// prevents it.
boolean profileSystemServer = SystemProperties.getBoolean(
"dalvik.vm.profilesystemserver", false);
if (profileSystemServer && (Build.IS_USERDEBUG || Build.IS_ENG)) {
try {
prepareSystemServerProfile(systemServerClasspath);
} catch (Exception e) {
Log.wtf(TAG, "Failed to set up system server profile", e);
}
}
}
if (parsedArgs.invokeWith != null) {//不会进入这个分支,所以忽略
......
}else {
ClassLoader cl = null;
if (systemServerClasspath != null) {
// 利用systemServerClass对应的路径构建对应的ClassLoader
cl = createPathClassLoader(systemServerClasspath, parsedArgs.targetSdkVersion);
Thread.currentThread().setContextClassLoader(cl);
}
/*
* Pass the remaining arguments to SystemServer.
*/
// 将剩余参数及classLoader递交给ZygoteInit的zygoteInit函数
return ZygoteInit.zygoteInit(parsedArgs.targetSdkVersion, parsedArgs.remainingArgs, cl);
}
/* should never reach here */
}
从上面的代码可以看出,接下来的流程进入到ZygoteInit的zygoteInit函数。zygoteInit函数将根据classLoader和参数,完成不同进程所需要的初始化工作(SystemServer进程与zygote的其它子进程均将使用zygoteInit函数)。
在分析performSystemServerDexOpt我们先来看看Os.getenv(“SYSTEMSERVERCLASSPATH”)获取的环境变量是什么,关于怎么通过adb查看Android系统环境变量可以参见如下博客Android获取和设置系统环境变量指南,SYSTEMSERVERCLASSPATH 环境变量值如下:
130|msm8953_64:/ # echo $SYSTEMSERVERCLASSPATH
/system/framework/services.jar:/system/framework/ethernet-service.jar:/system/framework/wifi-service.jar
msm8953_64:/ #
了解了performSystemServerDexOpt的传入参数,我们接着继续分析下面的代码,该代码的逻辑如下:
private static void performSystemServerDexOpt(String classPath) {
final String[] classPathElements = classPath.split(":");//分割字符串
final IInstalld installd = IInstalld.Stub
.asInterface(ServiceManager.getService("installd"));//建立和install进程通信的socket通道
final String instructionSet = VMRuntime.getRuntime().vmInstructionSet();
String classPathForElement = "";
for (String classPathElement : classPathElements) {
// System server is fully AOTed and never profiled
// for profile guided compilation.
String systemServerFilter = SystemProperties.get(
"dalvik.vm.systemservercompilerfilter", "speed");
int dexoptNeeded;
try {
dexoptNeeded = DexFile.getDexOptNeeded(
classPathElement, instructionSet, systemServerFilter,
null /* classLoaderContext */, false /* newProfile */, false /* downgrade */);//判断是否需要优化
} catch (FileNotFoundException ignored) {
// Do not add to the classpath.
Log.w(TAG, "Missing classpath element for system server: " + classPathElement);
continue;
} catch (IOException e) {
// Not fully clear what to do here as we don't know the cause of the
// IO exception. Add to the classpath to be conservative, but don't
// attempt to compile it.
Log.w(TAG, "Error checking classpath element for system server: "
+ classPathElement, e);
dexoptNeeded = DexFile.NO_DEXOPT_NEEDED;
}
if (dexoptNeeded != DexFile.NO_DEXOPT_NEEDED) {//如果需要优化
final String packageName = "*";
final String outputPath = null;
final int dexFlags = 0;
final String compilerFilter = systemServerFilter;
final String uuid = StorageManager.UUID_PRIVATE_INTERNAL;
final String seInfo = null;
final String classLoaderContext =
getSystemServerClassLoaderContext(classPathForElement);
final int targetSdkVersion = 0; // SystemServer targets the system's SDK version
try {
//以system权限执行dexopt优化工作
installd.dexopt(classPathElement, Process.SYSTEM_UID, packageName,
instructionSet, dexoptNeeded, outputPath, dexFlags, compilerFilter,
uuid, classLoaderContext, seInfo, false /* downgrade */,
targetSdkVersion, /*profileName*/ null, /*dexMetadataPath*/ null,
"server-dexopt");
} catch (RemoteException | ServiceSpecificException e) {
// Ignore (but log), we need this on the classpath for fallback mode.
Log.w(TAG, "Failed compiling classpath element for system server: "
+ classPathElement, e);
}
}
classPathForElement = encodeSystemServerClassPath(
classPathForElement, classPathElement);
}
}
在前面的2.5章节我们知道parsedArgs.invokeWith属性默认为null,最后调用RuntimeInit.zygoteInit来进一步启动system_server进程。在zygoteInit中执行的主要代码逻辑如下:
public static final Runnable zygoteInit(int targetSdkVersion, String[] argv, ClassLoader classLoader) {
if (RuntimeInit.DEBUG) {
Slog.d(RuntimeInit.TAG, "RuntimeInit: Starting application from zygote");
}
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ZygoteInit");
RuntimeInit.redirectLogStreams();//重定向Log输出
RuntimeInit.commonInit();//通用的初始化,详见章节2.8
ZygoteInit.nativeZygoteInit();//启动Binder线程池,详见章节2.9
return RuntimeInit.applicationInit(targetSdkVersion, argv, classLoader);//system_server应用初始化,详见章节2.10
}
该代码定义在frameworks/base/core/java/com/android/internal/os/RuntimeInit.java中,主要是做了一些常规的初始化,从逻辑上分析主要分为如下几个方面:
protected static final void commonInit() {
if (DEBUG) Slog.d(TAG, "Entered RuntimeInit!");
/*
* set handlers; these apply to all threads in the VM. Apps can replace
* the default handler, but not the pre handler.
*/
//对于从事应用开发的童靴来说这个是再熟悉不过的了,设置未捕获异常的处理方法
LoggingHandler loggingHandler = new LoggingHandler();
Thread.setUncaughtExceptionPreHandler(loggingHandler);
Thread.setDefaultUncaughtExceptionHandler(new KillApplicationHandler(loggingHandler));
/*
* Install a TimezoneGetter subclass for ZoneInfo.db
*/
/*设置时区,中国时区的为Asia/Shanghai,为啥不是北京呢
*msm8953_64:/ # getprop persist.sys.timezone
*Asia/Shanghai
*/
TimezoneGetter.setInstance(new TimezoneGetter() {
@Override
public String getId() {
return SystemProperties.get("persist.sys.timezone");
}
});
TimeZone.setDefault(null);
/*
* Sets handler for java.util.logging to use Android log facilities.
* The odd "new instance-and-then-throw-away" is a mirror of how
* the "java.util.logging.config.class" system property works. We
* can't use the system property here since the logger has almost
* certainly already been initialized.
*/
LogManager.getLogManager().reset();//重置log配置
new AndroidConfig();
/*
* Sets the default HTTP User-Agent used by HttpURLConnection.
*/
// 设置默认的HTTP User-agent格式,用于 HttpURLConnection。
String userAgent = getDefaultUserAgent();
System.setProperty("http.agent", userAgent);
/*
* Wire socket tagging to traffic stats.
*/
//标记socket的tag,主要用于流量统计
NetworkManagementSocketTagger.install();
/*
* If we're running in an emulator launched with "-trace", put the
* VM into emulator trace profiling mode so that the user can hit
* F9/F10 at any time to capture traces. This has performance
* consequences, so it's not something you want to do always.
*/
String trace = SystemProperties.get("ro.kernel.android.tracing");
if (trace.equals("1")) {
Slog.i(TAG, "NOTE: emulator trace profiling enabled");
Debug.enableEmulatorTraceOutput();
}
initialized = true;
}
这其中User-Agent是Http协议中的一部分,属于头域的组成部分,是一种向访问网站者提供你所使用的浏览器类型,操作系统,浏览器内核等信息的标识。通过这个标识,用户所访问的网站可以显示不同的排版,从而为用户提供更好的体验或者进行信息统计。
一看方法名称就知道是要调用native方法进行初始化,通过调用nativeZygoteInit主要是用来启动Binder线程池的。该方法nativeZyoteInit实现在frameworks/base/core/jni/AndroidRuntime.cpp中,对应的JNI映射如下所示:
int register_com_android_internal_os_ZygoteInit_nativeZygoteInit(JNIEnv* env)
{
const JNINativeMethod methods[] = {
{ "nativeZygoteInit", "()V",
(void*) com_android_internal_os_ZygoteInit_nativeZygoteInit },
};
return jniRegisterNativeMethods(env, "com/android/internal/os/ZygoteInit",
methods, NELEM(methods));
}
通过JNI的gMethods数组,可以看出nativeZygoteInit函数对应的是JNI文件AndroidRuntime.cpp的com_android_internal_os_RuntimeInit_nativeZygoteInit函数:
static AndroidRuntime* gCurRuntime = NULL;
AndroidRuntime::AndroidRuntime(char* argBlockStart, const size_t argBlockLength) :
mExitWithoutCleanup(false),
mArgBlockStart(argBlockStart),
mArgBlockLength(argBlockLength)
{
SkGraphics::Init();
// Pre-allocate enough space to hold a fair number of options.
mOptions.setCapacity(20);
assert(gCurRuntime == NULL); // one per process
gCurRuntime = this;
}
static void com_android_internal_os_ZygoteInit_nativeZygoteInit(JNIEnv* env, jobject clazz)
{
//此处的gCurRuntime为AppRuntime,是在AndroidRuntime.cpp中定义的,这个会详细分析的
gCurRuntime->onZygoteInit();
}
这里可以看到gCurRuntime是AndroidRuntime类型的指针,可是AndroidRuntime的onZygoteInit却是一个虚函数,那么就应该在其子类中实现了。那么gCurRuntime究竟指的是什么呢?
在我们前面的篇章中介绍zygote启动过程中,在app_main.cpp的main函数中,创建出了AppRuntime对象,其逻辑如下:
int main(int argc, char* const argv[])
{
......
AppRuntime runtime(argv[0], computeArgBlockSize(argc, argv));
......
}
而AppRuntime 的定义也在app_main.c中其如下:
class AppRuntime : public AndroidRuntime
{
public:
AppRuntime(char* argBlockStart, const size_t argBlockLength)
: AndroidRuntime(argBlockStart, argBlockLength)
, mClass(NULL)
{
}
......
}
接着继续来看看AppRuntime的父类AndroidRuntime的代码:
AndroidRuntime::AndroidRuntime(char* argBlockStart, const size_t argBlockLength) :
mExitWithoutCleanup(false),
mArgBlockStart(argBlockStart),
mArgBlockLength(argBlockLength)
{
SkGraphics::Init();
// Pre-allocate enough space to hold a fair number of options.
mOptions.setCapacity(20);
assert(gCurRuntime == NULL); // one per process
gCurRuntime = this;
}
从代码可以看出,AndroidRuntime初始化时定义了gCurRuntime。gCurRuntime指向对象自身,也就是说gCurRuntime指向的是AppRuntime对象(有时候感觉继承搞起来是比较麻烦,我们驱动的同事就说看着面向对象里面那一堆堆的继承,就头疼)。
由于SystemServer进程由zygote进程fork出来,于是system server进程中也存在gCurRuntime对象,类型为AppRuntime。至此我们知道,Native函数中gCurRuntime->onZygoteInit将调用AppRuntime中的onZygoteInit。
virtual void onZygoteInit()
{
sp<ProcessState> proc = ProcessState::self();
ALOGV("App process: starting thread pool.\n");
proc->startThreadPool();//开启binder线程,是不是有中似曾相识的熟悉感觉
}
ProcessState::self()是单例模式,主要工作是调用open()打开/dev/binder驱动设备,再利用mmap()映射内核的地址空间,将Binder驱动的fd赋值ProcessState对象中的变量mDriverFD,用于交互操作。startThreadPool()是创建一个新的binder线程,不断进行talkWithDriver(),在binder系列文章中Android Binder入门指南之Binder服务的消息循环有关于该详细的讲解,这里就不过多阐述了。这样将当前线程注册到Binder驱动程序中,这样我们创建的线程就加入了Binder线程池中,这样新创建的SyetemServer进程就支持Binder进程间通信了。
继续回到ZygoteInit.java类中的applicationInit看看它做了些什么,applicationInit定义在RuntimeInit.java中,其主要逻辑如下:
protected static Runnable applicationInit(int targetSdkVersion, String[] argv,
ClassLoader classLoader) {
// If the application calls System.exit(), terminate the process
// immediately without running any shutdown hooks. It is not possible to
// shutdown an Android application gracefully. Among other things, the
// Android runtime shutdown hooks close the Binder driver, which can cause
// leftover running threads to crash before the process actually exits.
//大概意思就是为true时,应用程序退出不会调用System.exit(),从而使一些关联hook可以顺利关闭
nativeSetExitWithoutCleanup(true);
// We want to be fairly aggressive about heap utilization, to avoid
// holding on to a lot of memory that isn't needed.
//设置虚拟机的内存利用率参数值为0.75
VMRuntime.getRuntime().setTargetHeapUtilization(0.75f);
VMRuntime.getRuntime().setTargetSdkVersion(targetSdkVersion);
final Arguments args = new Arguments(argv);//解析参数格式为Arguments
// The end of of the RuntimeInit event (see #zygoteInit).
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
// Remaining arguments are passed to the start class's static main
//调用findStaticMain做进一步操作,具体查看2.11章节
return findStaticMain(args.startClass, args.startArgs, classLoader);
}
接着分析findStaticMain方法,其中传递进来的参数className是om.android.server.SystemServer ,所以其主要逻辑如下:
protected static Runnable findStaticMain(String className, String[] argv,
ClassLoader classLoader) {
Class<?> cl;
try {
// className为进行初始化工作的进程类名
//在forkSystemServer()方法中通过硬编码初始化参数,可知该参数为com.android.server.SystemServer
cl = Class.forName(className, true, classLoader);
} catch (ClassNotFoundException ex) {
throw new RuntimeException(
"Missing class when invoking static main " + className,
ex);
}
Method m;
try {
//获取main方法
m = cl.getMethod("main", new Class[] { String[].class });
} catch (NoSuchMethodException ex) {
throw new RuntimeException(
"Missing static main on " + className, ex);
} catch (SecurityException ex) {
throw new RuntimeException(
"Problem getting static main on " + className, ex);
}
//判断你修饰符
int modifiers = m.getModifiers();
if (! (Modifier.isStatic(modifiers) && Modifier.isPublic(modifiers))) {
throw new RuntimeException(
"Main method is not public and static on " + className);
}
/*
* This throw gets caught in ZygoteInit.main(), which responds
* by invoking the exception's run() method. This arrangement
* clears up all the stack frames that were required in setting
* up the process.
*/
return new MethodAndArgsCaller(m, argv);
}
这里有一点需要重点注意的,在Android 8之前的版本都是通过直接在MethodAndArgsCaller抛出该异常,然后在ZygoteInit.java中的main方法中捕获,但是Android 8及以后都改变了这种策略是通过返回MethodAndArgsCaller,然后在main中直接调用,其逻辑如下所示,接着判断Runnable 是否为空,如果不为空则调用run方法
if (startSystemServer) {
Runnable r = forkSystemServer(abiList, socketName, zygoteServer);
// {@code r == null} in the parent (zygote) process, and {@code r != null} in the
// child (system_server) process.
if (r != null) {
r.run();
return;
}
}
在ZygoteInit.java中的main方法中运行r.run直捣黄龙,启动SystemServer的main方法。
static class MethodAndArgsCaller implements Runnable {
/** method to call */
private final Method mMethod;
/** argument array */
private final String[] mArgs;
public MethodAndArgsCaller(Method method, String[] args) {
mMethod = method;
mArgs = args;
}
public void run() {
try {
//根据传递过来的参数,可知此处通过反射机制调用的是SystemServer.main()方法
mMethod.invoke(null, new Object[] { mArgs });
} catch (IllegalAccessException ex) {
throw new RuntimeException(ex);
} catch (InvocationTargetException ex) {
Throwable cause = ex.getCause();
if (cause instanceof RuntimeException) {
throw (RuntimeException) cause;
} else if (cause instanceof Error) {
throw (Error) cause;
}
throw new RuntimeException(ex);
}
}
}
经过层层的拨山涉水,我们终于总算是进入到了SystemServer类的main()方法,但是这还只是分析system_server进程的开端,在后续的篇章中我们将要真正的分析system_server进程真的干了什么,为啥它能在Android的世界里面如此位高权重。
未完待续,请参见篇章Android 9 §系统启动之SystemServer大揭秘下。