openpose检测的部分代码和模型来自一个存储库,具体的连接忘了,日后找到的话补上。
另外,单纯的姿态检测的话不需要深度学习框架,只要有opencv即可。如果要单人检测,就需要用到目标检测算法,使用的是yolo,需要用到pytorch。
# -*- coding: utf-8 -*-
"""
Created on Fri May 24 23:18:36 2019
@author: wangwei
"""
import cv2
import time
import numpy as np
from random import randint
# 供内部调用的函数
def getKeypoints(probMap, threshold=0.1):
mapSmooth = cv2.GaussianBlur(probMap, (3,3), 0, 0)
mapMask = np.uint8(mapSmooth > threshold)
keypoints = []
#find the blobs
# 可能会遇到opencv版本不对的问题,导致下面的函数返回值不一样,删除第一个下划线就行了
_, contours, _ = cv2.findContours(mapMask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
#for each blob find the maxima
for cnt in contours:
blobMask = np.zeros(mapMask.shape)
blobMask = cv2.fillConvexPoly(blobMask, cnt, 1)
maskedProbMap = mapSmooth * blobMask
_, maxVal, _, maxLoc = cv2.minMaxLoc(maskedProbMap)
keypoints.append(maxLoc + (probMap[maxLoc[1], maxLoc[0]],))
keypoints_temp = keypoints
#print('===========keypoints========{}'.format(keypoints))
return keypoints
# 供内部调用的函数
# Find valid connections between the different joints of a all persons present
def getValidPairs(output, mapIdx, frameWidth, frameHeight, POSE_PAIRS, detected_keypoints):
valid_pairs = []
invalid_pairs = []
n_interp_samples = 10
paf_score_th = 0.1
conf_th = 0.7
# loop for every POSE_PAIR
for k in range(len(mapIdx)):
# A->B constitute a limb
pafA = output[0, mapIdx[k][0], :, :]
pafB = output[0, mapIdx[k][1], :, :]
pafA = cv2.resize(pafA, (frameWidth, frameHeight))
pafB = cv2.resize(pafB, (frameWidth, frameHeight))
# Find the keypoints for the first and second limb
candA = detected_keypoints[POSE_PAIRS[k][0]]
candB = detected_keypoints[POSE_PAIRS[k][1]]
nA = len(candA)
nB = len(candB)
# If keypoints for the joint-pair is detected
# check every joint in candA with every joint in candB
# Calculate the distance vector between the two joints
# Find the PAF values at a set of interpolated points between the joints
# Use the above formula to compute a score to mark the connection valid
if( nA != 0 and nB != 0):
valid_pair = np.zeros((0,3))
for i in range(nA):
max_j=-1
maxScore = -1
found = 0
for j in range(nB):
# Find d_ij
d_ij = np.subtract(candB[j][:2], candA[i][:2])
norm = np.linalg.norm(d_ij)
if norm:
d_ij = d_ij / norm
else:
continue
# Find p(u)
interp_coord = list(zip(np.linspace(candA[i][0], candB[j][0], num=n_interp_samples),
np.linspace(candA[i][1], candB[j][1], num=n_interp_samples)))
# Find L(p(u))
paf_interp = []
for k in range(len(interp_coord)):
paf_interp.append([pafA[int(round(interp_coord[k][1])), int(round(interp_coord[k][0]))],
pafB[int(round(interp_coord[k][1])), int(round(interp_coord[k][0]))] ])
# Find E
paf_scores = np.dot(paf_interp, d_ij)
avg_paf_score = sum(paf_scores)/len(paf_scores)
# Check if the connection is valid
# If the fraction of interpolated vectors aligned with PAF is higher then threshold -> Valid Pair
if ( len(np.where(paf_scores > paf_score_th)[0]) / n_interp_samples ) > conf_th :
if avg_paf_score > maxScore:
max_j = j
maxScore = avg_paf_score
found = 1
# Append the connection to the list
if found:
valid_pair = np.append(valid_pair, [[candA[i][3], candB[max_j][3], maxScore]], axis=0)
# Append the detected connections to the global list
valid_pairs.append(valid_pair)
else: # If no keypoints are detected
print("No Connection : k = {}".format(k))
invalid_pairs.append(k)
valid_pairs.append([])
# print('=============valied-pairs======={}'.format(valid_pairs))
# print('==============invalid-pairs========={}'.format(invalid_pairs))
return valid_pairs, invalid_pairs
# 供内部调用的函数
# This function creates a list of keypoints belonging to each person
# For each detected valid pair, it assigns the joint(s) to a person
def getPersonwiseKeypoints(valid_pairs, invalid_pairs, mapIdx, POSE_PAIRS, keypoints_list):
# the last number in each row is the overall score
personwiseKeypoints = -1 * np.ones((0, 19))
for k in range(len(mapIdx)):
if k not in invalid_pairs:
partAs = valid_pairs[k][:,0]
partBs = valid_pairs[k][:,1]
indexA, indexB = np.array(POSE_PAIRS[k])
for i in range(len(valid_pairs[k])):
found = 0
person_idx = -1
for j in range(len(personwiseKeypoints)):
if personwiseKeypoints[j][indexA] == partAs[i]:
person_idx = j
found = 1
break
if found:
personwiseKeypoints[person_idx][indexB] = partBs[i]
personwiseKeypoints[person_idx][-1] += keypoints_list[partBs[i].astype(int), 2] + valid_pairs[k][i][2]
# if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(19)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
# add the keypoint_scores for the two keypoints and the paf_score
row[-1] = sum(keypoints_list[valid_pairs[k][i,:2].astype(int), 2]) + valid_pairs[k][i][2]
personwiseKeypoints = np.vstack([personwiseKeypoints, row])
# print('===========personwisekeypoints=========={}'.format(personwiseKeypoints))
return personwiseKeypoints
# 供外部调用的主要函数
def humanPoseDetector(img):
"""
input: one image(contain just one person) to detect the human pose
output: the image whose size is changed and pose is drawed and the location of keypoints that are detected
and the valied pairs
"""
# 读取神经网络
protoFile = "./weights/pose_deploy_linevec.prototxt"
weightsFile = "./weights/pose_iter_440000.caffemodel"
nPoints = 18
# COCO Output Format
keypointsMapping = ['Nose', 'Neck', 'R-Sho', 'R-Elb', 'R-Wr', 'L-Sho', 'L-Elb', 'L-Wr', 'R-Hip',
'R-Knee', 'R-Ank', 'L-Hip', 'L-Knee', 'L-Ank', 'R-Eye', 'L-Eye', 'R-Ear', 'L-Ear']
POSE_PAIRS = [[1,2], [1,5], [2,3], [3,4], [5,6], [6,7],
[1,8], [8,9], [9,10], [1,11], [11,12], [12,13],
[1,0], [0,14], [14,16], [0,15], [15,17],
[2,17], [5,16] ]
# index of pafs correspoding to the POSE_PAIRS
# e.g for POSE_PAIR(1,2), the PAFs are located at indices (31,32) of output, Similarly, (1,5) -> (39,40) and so on.
mapIdx = [[31,32], [39,40], [33,34], [35,36], [41,42], [43,44],
[19,20], [21,22], [23,24], [25,26], [27,28], [29,30],
[47,48], [49,50], [53,54], [51,52], [55,56],
[37,38], [45,46]]
colors = [ [0,100,255], [0,100,255], [0,255,255], [0,100,255], [0,255,255], [0,100,255],
[0,255,0], [255,200,100], [255,0,255], [0,255,0], [255,200,100], [255,0,255],
[0,0,255], [255,0,0], [200,200,0], [255,0,0], [200,200,0], [0,0,0]]
frameWidth = img.shape[1]
frameHeight = img.shape[0]
t = time.time()
net = cv2.dnn.readNetFromCaffe(protoFile, weightsFile)
# 调整输入高度,并根据图像纵横比改变输入宽度
inHeight = 368
inWidth = int((inHeight/frameHeight)*frameWidth)
inpBlob = cv2.dnn.blobFromImage(img, 1.0 / 255, (inWidth, inHeight),
(0, 0, 0), swapRB=False, crop=False)
# 向前通过网络
net.setInput(inpBlob)
output = net.forward()
print("Time Taken in forward pass = {}".format(time.time() - t))
detected_keypoints = []
keypoints_list = np.zeros((0,3))
keypoint_id = 0
threshold = 0.1
keypoints_location = []
for part in range(nPoints):
probMap = output[0,part,:,:]
probMap = cv2.resize(probMap, (img.shape[1], img.shape[0]))
keypoints = getKeypoints(probMap, threshold) #此处必须把keypoints_location变量放在前面,因为其没有默认值,有默认值的不能放在最前面
#keypoints_temp = list(keypoints[0])
# 将所有关键点的坐标存放在一个列表里,为一个二维列表,每一元素为一含有三个元素的列表,分别为坐标和编号
if keypoints != []:
keypoints_temp = list(keypoints[0])
keypoints_temp[2] = part
keypoints_location.append(keypoints_temp) # 删除每一个点坐标的第三个置信度,将其变为对应的关节点的编号
else:
keypoints_location.append(keypoints) # 如果没有检测到,直接补空列表
print("Keypoints - {} : {}".format(keypointsMapping[part], keypoints))
keypoints_with_id = []
for i in range(len(keypoints)):
keypoints_with_id.append(keypoints[i] + (keypoint_id,))
keypoints_list = np.vstack([keypoints_list, keypoints[i]])
keypoint_id += 1
detected_keypoints.append(keypoints_with_id)
keypointsImg = img.copy()
for i in range(nPoints):
for j in range(len(detected_keypoints[i])):
cv2.circle(keypointsImg, detected_keypoints[i][j][0:2], 5, colors[i], -1, cv2.LINE_AA)
#cv2.imshow("Keypoints",frameClone)
valid_pairs, invalid_pairs = getValidPairs(output, mapIdx, frameWidth, frameHeight, POSE_PAIRS, detected_keypoints)
personwiseKeypoints = getPersonwiseKeypoints(valid_pairs, invalid_pairs, mapIdx, POSE_PAIRS, keypoints_list)
lineImg = keypointsImg.copy()
for i in range(17):
for n in range(len(personwiseKeypoints)):
index = personwiseKeypoints[n][np.array(POSE_PAIRS[i])]
if -1 in index:
continue
B = np.int32(keypoints_list[index.astype(int), 0])
A = np.int32(keypoints_list[index.astype(int), 1])
cv2.line(lineImg, (B[0], A[0]), (B[1], A[1]), colors[i], 3, cv2.LINE_AA)
# 添加计时
t, _ = net.getPerfProfile()
freq = cv2.getTickFrequency() / 1000
# cv2.putText(lineImg, '%.2fms' % (t / freq), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
return keypointsImg, lineImg, keypoints_location, valid_pairs, personwiseKeypoints, keypoints_list
# return keypointsImg, lineImg, keypoints_location, valid_pairs
#cv2.imshow("Detected Pose" , frameClone)
#cv2.waitKey(0)
#cv2.destroyAllWindows()
其中最后一个函数返回的参数经常要做修改,所以,在上面的例子中返回的参数比较多。分别是:
keypointsImg
:在原图像上检测并标记处关键点的图像lineImg
:已经画出火柴人的图像keypoints_location
:关键点的坐标valid_pairs
:因为不是所有的点都可以检测到,这里记录有有效连接的点的组合personwiseKeypoints
:其实是关键点的另一种保存方式,主要为后面提取火柴人用keypoints_list
:基本上同上"""
简单的进行检测一张图像里的所有人的姿态
"""
from HumanPoseDetecte import humanPoseDetector
import cv2
PATH = 'data/test.jpg'
img = cv2.imread(PATH)
keypointsImg, lineImg, keypoints_location, valid_pairs,_,_ = humanPoseDetector(img)
print(keypoints_location)
print(valid_pairs)
cv2.imshow('1', keypointsImg)
cv2.imshow('2', lineImg)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite('output/test_keypoints.jpg', imgClone)
cv2.imwrite('output/test_out.jpg', imgClone_new)
"""
针对视频进行姿态检测的程序
不过也只是简单的检测每一帧的所有人
"""
import cv2
import os
import time
from HumanPoseDetecte import humanPoseDetector
path = './data/video/'
outPath = './output/video'
if not os.path.exists(outPath):
os.mkdir(outPath)
# 检测一个视频的函数
def run(video_path):
video_name = video_path.split('/')[-1].split('.')[0]
out_video_path = 'output/video/' + video_name + '-out.mp4'
cap = cv2.VideoCapture(video_path) # 读取视频
input_fps = cap.get(cv2.CAP_PROP_FPS) # 帧率
video_frame_num = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 帧数
video_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
video_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_fps = int(input_fps)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(out_video_path, fourcc, output_fps, (video_width, video_height))
count = 0 # 用来计数,显示进度
while(cap.isOpened()):
ret_val, frame = cap.read()
if not ret_val:
break
else:
if count % 100 == 0:
print('{} / {} have done'.format(count, video_frame_num))
count += 1
start = time.time()
canvas = frame.copy()
keypoints_img, line_img, _,_,_,_ = humanPoseDetector(canvas)
finish = time.time()
cv2.putText(line_img, "FPS:%f" %(1. / (finish-start)), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
out.write(line_img)
cv2.imshow('img', line_img)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
out.release()
cv2.destroyAllWindows()
video_names = os.listdir(path)
first = path + video_names[0]
run(first)
因为检测单人需要先进行目标检测,提取出单人的图像,再进行姿态检测。目标检测部分的代码移步第四部分。
任何一个目标检测的算法都可以,这里只是一个例子。使用的是yolo。也是很久之前fork一个存储库的,同样忘了是哪一个,日后找到的话,会补上链接。
import cv2
import numpy as np
import time
from torchvision import transforms
import cv2
import math
import time
import torch
import numpy as np
from utils.utils import *
from utils.datasets import *
from yolo_models import *
from face_models import Resnet50FaceModel, Resnet18FaceModel
# 下面的三个库是自己做的,分别为openpose和目标提取,以及角度计算
from openpose.HumanPoseDetecte import humanPoseDetector
from extractTarget.extractRectangleTarget import extractRectangleTarget
from calculateangle.calculateAngle import calculatekeypointsAngle
# tracker
class Tracker(object):
def __init__(self):
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
"""
human&face detection
"""
self.boxSize = 384
self.yolov3 = "./cfg/yolov3orihf.cfg"
self.dataConfigPath = "cfg/coco.data"
self.weightsPath_hf = "weights/latest_h_f.pt"
self.confThres = 0.5
self.nmsThres = 0.45
self.dataConfig = parse_data_config(self.dataConfigPath)
self.classes = load_classes(self.dataConfig['names'])
"""
indentification
"""
self.weightsPath_c = "./weights/res18_aug_market_cuhk.pth.tar"
self.suspected_bbx = []
self.infer_shape = (96, 128)
# replay embedded vector buffer: store 10 timestep of embedded vector of target
self.target_vector_buffer = np.zeros((10, 512))
self.target_bbx = np.array([])
self.bufferSize = 10
self.bufferPointer = 0
self.counter = 0 # 原始值为0
self.way2 = True
def getCenterModel(self):
# model = Resnet50FaceModel
model = Resnet18FaceModel
model = model(False).to(self.device)
checkpoint = torch.load(self.weightsPath_c)
model.load_state_dict(checkpoint['state_dict'], strict=False)
model.eval()
return model
def getHFDModel(self):
model = Darknet(self.yolov3, self.boxSize)
model.load_state_dict(torch.load(self.weightsPath_hf)['model'])
model.to(self.device).eval()
return model
def getPoseModel(self):
model = cascaded_pose_net_dev.PoseModel(cfg_path=self.yoloBase)
model.load_state_dict(torch.load(self.weightsPath))
# model = torch.nn.DataParallel(model)
model.to(self.device).eval()
return model
def normalization(self, img, resize=False):
if resize:
# print(img.shape)
h, w = img.shape[:2]
img = cv2.resize(img, (0,0), fx=self.infer_shape[0]/w, fy=self.infer_shape[1]/h, interpolation=cv2.INTER_CUBIC)
return img.astype(np.float32) / 255.
def resizeRequested(self, img, height=96, width=96):
height_, width_ = img.shape[:2]
return cv2.resize(img, (0,0), fx=width/width_, fy=height/height_, interpolation=cv2.INTER_CUBIC)
def iou_fillter(self):
"""Compute IoU between detect box and gt boxes
Parameters:
----------
box: numpy array , shape (4, ): x1, y1, x2, y2
input box
boxes: numpy array, shape (n, 4): x1, y1, x2, y2
input ground truth boxes
"""
# box = (x1, y1, x2, y2)
box = self.target_bbx[:]
# print(box)
boxes = np.array(self.suspected_bbx)
if len(boxes) == 0 or len(box) == 0:
return
# print(boxes)
box_area = (box[2] - box[0] + 1) * (box[3] - box[1] + 1)
area = (boxes[:, 2] - boxes[:, 0] + 1) * (boxes[:, 3] - boxes[:, 1] + 1)
# abtain the offset of the interception of union between crop_box and gt_box
xx1 = np.maximum(box[0], boxes[:, 0])
yy1 = np.maximum(box[1], boxes[:, 1])
xx2 = np.minimum(box[2], boxes[:, 2])
yy2 = np.minimum(box[3], boxes[:, 3])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (box_area + area - inter)
# select ovr > 0.4
thre_ovr_idex = np.where(ovr > 0.4)
# update boxes
u_boxes = boxes[thre_ovr_idex]
# update ovr
ovr = ovr[thre_ovr_idex]
if len(u_boxes) > 3:
# return the top3 ovr index
top3_index = np.argsort(ovr)[-3:]
self.suspected_bbx = u_boxes[top3_index]
elif len(u_boxes) == 1:
self.suspected_bbx = u_boxes
elif len(u_boxes) == 0:
# 镜头突然切换,iou为0,对所有预测框筛选,得出目标
# 目标原先的bbx失去跟踪意义,清空
self.way2 = True
self.target_bbx = np.array([])
self.suspected_bbx = boxes
# print(self.suspected_bbx)
def indentification(self, img, canvas, model, query):
# print('using indetification')
"""
返回的参数增加了location,即用来框住目标的矩形的四个角的坐标
"""
imgs = []
ori = img
location = []
if self.counter != 0:
self.iou_fillter()
# print('--------------------3-------------')
if self.counter == 0:
query_img = cv2.imread(query)
#query_img = query
query_img = self.normalization(query_img, resize=True)
query_img = torch.from_numpy(query_img.transpose(2, 0, 1)).unsqueeze(0)
query_img = query_img.to(self.device)
_, embeddings = model(query_img)
embeddings = embeddings.cpu().detach().numpy()
self.target_vector_buffer[self.bufferPointer, :] = embeddings
self.bufferPointer += 1
# self.target_bbx = np.append(self.target_bbx, self.suspected_bbx[0])
self.counter = 1
# print('---------------------5------------------')
else:
for bbx in self.suspected_bbx:
img = ori[int(bbx[1]):int(bbx[3]), int(bbx[0]):int(bbx[2]), :]
img = self.normalization(img, resize=True)
img = torch.from_numpy(img.transpose(2, 0, 1)).unsqueeze(0)
imgs.append(img)
# img = self.transform_for_infer(self.infer_shape)(img)
# imgs.append(img.unsqueeze(0))
if len(imgs) != 0:
imgs = torch.cat(imgs, 0)
imgs = imgs.to(self.device)
# print(imgs.shape)
# tic = time.time()
_, embeddings = model(imgs)
# toc = time.time()
# print(toc-tic)
embeddings = embeddings.cpu().detach().numpy() # (3, 512)
distance = np.zeros((1, len(self.suspected_bbx))) # (1, 3) 3--bbox 10--vector buffer
if self.bufferPointer < 19:
for i in range(self.bufferPointer):
distance += np.sum((embeddings - np.expand_dims(self.target_vector_buffer[i, :], axis=0))**2, axis=1)
distance /= self.bufferPointer
else:
for i in range(self.bufferSize):
distance += np.sum((embeddings - np.expand_dims(self.target_vector_buffer[i, :], axis=0))**2, axis=1)
distance /= self.bufferSize
# distance = np.squeeze(distance)
print(distance)
# print('-----------------4---------------')
# 1. 设定阈值 < 0.4
# index = np.where(distance < 0.4)
# 2. 找到空间距离最小的bbox
index = np.argmin(distance[0])
if self.way2:
if distance[0][index] < 0.6:
if self.bufferPointer > 9:
self.bufferPointer = 0
self.target_vector_buffer[self.bufferPointer, :] = embeddings[index, :]
self.bufferPointer += 1
x1, y1, x2, y2 = self.suspected_bbx[index]
# 更新target的bbx
# print(self.target_bbx)
# print(self.suspected_bbx[index])
self.target_bbx = self.suspected_bbx[index]
label = 'Target %f' % distance[0][index]
plot_one_box([x1, y1, x2, y2], canvas, label=label, color=(0, 255, 170))
self.way2 = False
location = [x1, y1, x2, y2]
else:
# print('-----------------6------------------')
if distance[0][index] < 0.4:
if self.bufferPointer > 9:
self.bufferPointer = 0
self.target_vector_buffer[self.bufferPointer, :] = embeddings[index, :]
self.bufferPointer += 1
x1, y1, x2, y2 = self.suspected_bbx[index]
# 更新target的bbx
# print(self.target_bbx)
# print(self.suspected_bbx[index])
self.target_bbx = self.suspected_bbx[index]
label = 'Target %f'%distance[0][index]
plot_one_box([x1, y1, x2, y2], canvas, label=label, color=(0, 255, 170))
# print('-------------------------7--------------------')
location = [x1, y1, x2, y2]
return canvas, location
def humanFaceDetector(self, img, canvas, model):
# print('using humanFaceDetector\n')
ori = img
img, _, _, _ = resize_square(img, height=self.boxSize, color=(127.5, 127.5, 127.5))
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img, dtype=np.float32)
img = self.normalization(img)
img = torch.from_numpy(img).unsqueeze(0).to(self.device)
# print('-----------------1------------------')
img_detections = []
with torch.no_grad():
pred = model(img)
pred = pred[pred[:, :, 4] > self.confThres]
if len(pred) > 0:
detections = non_max_suppression(pred.unsqueeze(0), self.confThres, self.nmsThres)
img_detections.extend(detections)
else:
detections = np.array([])
# print('----------------------2--------------------')
if len(detections) != 0:
# The amount of padding that was added
pad_x = max(ori.shape[0] - ori.shape[1], 0) * (self.boxSize / max(ori.shape))
pad_y = max(ori.shape[1] - ori.shape[0], 0) * (self.boxSize / max(ori.shape))
# Image height and width after padding is removed
unpad_h = self.boxSize - pad_y
unpad_w = self.boxSize - pad_x
for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections[0]:
# Rescale coordinates to original dimensions
box_h = ((y2 - y1) / unpad_h) * ori.shape[0]
box_w = ((x2 - x1) / unpad_w) * ori.shape[1]
y1 = (((y1 - pad_y // 2) / unpad_h) * ori.shape[0]).round().item()
x1 = (((x1 - pad_x // 2) / unpad_w) * ori.shape[1]).round().item()
x2 = (x1 + box_w).round().item()
y2 = (y1 + box_h).round().item()
x1, y1, x2, y2 = max(x1, 0), max(y1, 0), max(x2, 0), max(y2, 0)
label = '%s %.2f' % (self.classes[int(cls_pred)], conf)
color = [(255, 85, 0), (0, 255, 170)]
if int(cls_pred) == 0:
self.suspected_bbx.append([x1, y1, x2, y2])
# plot_one_box([x1, y1, x2, y2], canvas, label=label, color=color[int(cls_pred)])
# else:
# plot_one_box([x1, y1, x2, y2], canvas, label=label, color=color[int(cls_pred)])
return canvas
其他还有一些代码,直接按照路径保存到合适位置就可以了。就不贴上来了,之后会传上来。
# -*- coding: utf-8 -*-
"""
Created on Sat May 25 13:07:55 2019
@author: wangw
"""
"""
用于第一步框选出目标之后,提取矩形区域
暂时只提取出矩形区域即可
后期处理视频的话,由于每一帧的目标矩形大小不确定,所以可能需要建一个稍微大的全黑图像,将提取出的图像放在其中
"""
import cv2
import numpy as np
def extractRectangleTarget(img, location):
"""
图像在存储时是一个二维矩阵,其上某一像素点的坐标为(列,行)
"""
# 矩形位置
x1, x2, y1, y2 = int(location[0]), int(location[2]), int(location[1]), int(location[3])
extract_target_img = img[y1:y2, x1:x2]
return extract_target_img