设方程$\sin x-x\cos x=0$在$(0,+\infty )$中的第$n$个解为${{x}_{n}}$ ,证明:
$n\pi +\frac{\pi }{2}-\frac{1}{n\pi }<{{x}_{n}} 证明:设 $f(x)=\sin x-x\cos x$,则$f'(x) = x\sin x\left\{\begin{array}{ll} 其中${{I}_{n}}=(n\pi ,(n+1)\pi )$,又 $f(0)=0,f(2n\pi )=-2n\pi <0(n\ge 1),f((2n+1)\pi )=(2n+1)\pi >0$ 于是$f(x)=0$在$(0,+\infty )$中的第$n$个解${{x}_{n}}\in {{I}_{n}}$ ,再注意到 $f(2n\pi +\frac{\pi }{2}-\frac{1}{2n\pi })=\cos \frac{1}{2n\pi }-(2n\pi +\frac{\pi }{2}-\frac{1}{2n\pi })\sin \frac{1}{2n\pi }$ \[=(2n\pi +\frac{\pi }{2}-\frac{1}{2n\pi })\cos \frac{1}{2n\pi }\cdot \left( \frac{1}{(2n\pi +\frac{\pi }{2}-\frac{1}{2n\pi })}-\tan \frac{1}{2n\pi } \right)\] $<(2n\pi +\frac{\pi }{2}-\frac{1}{2n\pi })\cos \frac{1}{2n\pi }\cdot \left( \frac{1}{(2n\pi +\frac{\pi }{2}-\frac{1}{2n\pi })}-\frac{1}{2n\pi } \right)$ $<0$ \[f(2n\pi +\frac{\pi }{2})=1>0\] 于是 ${{x}_{2n}}\in (2n\pi +\frac{\pi }{2}-\frac{1}{2n\pi },2n\pi +\frac{\pi }{2})$ 同理,由 $f(2n\pi +\frac{\pi }{2}-\frac{1}{(2n+1)\pi })=-\cos \frac{1}{(2n+1)\pi }-\left[ (2n+1)\pi +\frac{\pi }{2}-\frac{1}{(2n+1)\pi } \right]\sin \frac{1}{(2n+1)\pi }$ \[=-\left[ (2n+1)\pi +\frac{\pi }{2}-\frac{1}{(2n+1)\pi } \right]\cos \frac{1}{(2n+1)\pi }\cdot \left( \frac{1}{(2n+1)\pi +\frac{\pi }{2}-\frac{1}{(2n+1)\pi }}-\tan \frac{1}{(2n+1)\pi } \right)\]$>0$ \[f\left( (2n+1)\pi +\frac{\pi }{2} \right)=-1<0\] 于是 ${{x}_{2n+1}}\in \left( (2n+1)\pi +\frac{\pi }{2}-\frac{1}{(2n+1)\pi },(2n+1)\pi +\frac{\pi }{2} \right)$ 求$\int_{\Gamma }{{{y}^{2}}}ds$,其中$\Gamma $是由$\left\{\begin{array}{ll} 解:由于$\Gamma :$$ 作变换$ 则令$l:$$ $\int_{\Gamma }{{{y}^{2}}}ds=\int_{l}{{{v}^{2}}}ds=\int_{0}^{2\pi }{\frac{{{a}^{2}}}{2}}{{\sin }^{2}}\theta \sqrt{{{\left( \frac{du}{d\theta } \right)}^{2}}+{{\left( \frac{dv}{d\theta } \right)}^{2}}+{{\left( \frac{dw}{d\theta } \right)}^{2}}}d\theta $ $=\int_{0}^{2\pi }{\frac{{{a}^{2}}}{2}{{\sin }^{2}}\theta \cdot \frac{a}{\sqrt{2}}}d\theta $ $=\frac{{{a}^{3}}\pi }{2\sqrt{2}}$ 其中$
> 0, & \hbox{$x \in {I_{2n}}$;} \\
< 0, & \hbox{$x \in {I_{2n + 1}}$.}
\end{array}
\right.$
{x^2} + {y^2} + {z^2} = {a^2} \\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} x + z = a
\end{array}
\right.$决定
\left\{\begin{array}{ll}
{\left( {x - \frac{a}{2}} \right)^2} + {y^2} + {\left( {z - \frac{a}{2}} \right)^2} = \frac{{{a^2}}}{2} \\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (x - \frac{a}{2}) + (z - \frac{a}{2}) = 0
\end{array}
\right.$
\left\{\begin{array}{ll}
u = x - \frac{a}{2} \\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} v = y\\
w = z - \frac{a}{2}
\end{array}
\right.$
\left\{\begin{array}{ll}
{u^2} + {v^2} + {w^2} = \frac{{{a^2}}}{2} \\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} u + w = 0
\end{array}
\right.$
\left\{\begin{array}{ll}
u = \frac{a}{2}\cos \theta \\
v = \frac{a}{{\sqrt 2 }}\sin \theta \\
w = - \frac{a}{2}\cos \theta
\end{array}
\right.$$0 \le \theta \le 2\pi $