ICP算法理解

1 经典ICP

  ICP的目的很简单,就是求解两堆点云之间的变换关系。怎么做呢?思路很自然,既然不知道R和t(针对刚体运动),那我们就假设为未知量呗,然后通过某些方法求解。下面我们来看看具体怎么求的~没办法,要把问题描述清楚,数学是少不了的了。假设有两堆点云,分别记为两个集合 X=x1,x2,...,xm Y=y1,y2,...,ym (m并不总是等于n)。然后呢,我们不失一般性的,假设两个点云之间的变换为R(旋转变换)和t(平移变换),这两个就是我们要求的东西啦~那我们将求解这个问题描述成最小化均方误差:
  

e(X,Y)=i=1m(Rxi+tyi)2

  经典的ICP方法对上面的优化问题的处理思路如下:
  (1)初始化 R t
  确定初始的 R t 的方法很多,如果什么方法都不知道,那随便赋一个 R t ,然后就迭代的算呀。随便给一个值从原理上来说也可以得到最终的一个结果呀,但是准不准就不知道了。相信有基本的优化概念的人都知道,初始值的选取很重要,如果初始值选的不好很容易收敛到一个局部最优解,然后局部最优解好不好那就另说了。ICP发展了这么多年了,当然有很多的方法来估计初始的R和t了,像PCL给的SampleConsensusInitalAlignment函数以及TransformationEstimationSVD函数都可以得到较好的初始估计。
  (2)迭代
  得到初始的估计后,接下来的步骤就顺理成章了:对于 X 中的每一个点用当前的 R t Y 中找最近的点(比如用欧式距离),然后这两个点就成了一对了~就这样,对所有的点都这么做一次,然后我们就得到了所有的匹配对了~然后呢,用每一对的坐标列一个方程,就得到一系列的方程。然后就求解最优的R和t最小化上面的误差。如此循环往复。

2 ICP变种

  除了经典的ICP方法外,还有一些变种,如point-to-point的,point-to-plane的以及plane-to-plane的,那么这三种方法到底是啥呢?
  其实很简单,就是上面的误差函数的定义不一样而已。在上面讲经典ICP的时候,求和的每一项不就是 X 中的每一个点到 Y 中的每一个点的距离吗?那就是point-to-point了,那么将求和的每一项变成 X 中的每一个点到 Y 中的平面的距离,那就是point-to-plane了呀~类似的,如果把求和的每一项变成X中的平面到 Y 中的平面的距离,那就是plane-to-plane了。我们说了这么久的平面,那么平面到时是怎么定义的呢?
  point-to-plane的误差函数定义为: Mopt=argminR,ti((Rxi+tyi)ni)

参考:http://www.cnblogs.com/jian-li/articles/4945676.html

你可能感兴趣的:(computer_vision,ICP)