当Java程序性能达不到既定目标,且其他优化手段都已经穷尽时,通常需要调整垃圾回收器来进一步提高性能,称为GC优化。但GC算法复杂,影响GC性能的参数众多,且参数调整又依赖于应用各自的特点,这些因素很大程度上增加了GC优化的难度。即便如此,GC调优也不是无章可循,仍然有一些通用的思考方法。本篇文章主要介绍下针对CMS GC的优化方法;
如何选择各分区大小应该依赖应用程序中对象生命周期的分布情况:如果应用存在大量的短期对象,应该选择较大的年轻代;如果存在相对较多的持久对象,老年代应该适当增大。
更多思考
动态年龄计算:Hotspot遍历所有对象时,按照年龄从小到大对其所占用的大小进行累积,当累积的某个年龄大小超过了survivor区的一半时,取这个年龄和MaxTenuringThreshold中更小的一个值,作为新的晋升年龄阈值。在本案例中,调优前:Survivor区 = 64M,desired survivor = 32M,此时Survivor区中age<=2的对象累计大小为41M,41M大于32M,所以晋升年龄阈值被设置为2,下次Minor GC时将年龄超过2的对象被晋升到老年代。
JVM引入动态年龄计算,主要基于如下两点考虑:
如果固定按照MaxTenuringThreshold设定的阈值作为晋升条件: a)MaxTenuringThreshold设置的过大,原本应该晋升的对象一直停留在Survivor区,直到Survivor区溢出,一旦溢出发生,Eden+Svuvivor中对象将不再依据年龄全部提升到老年代,这样对象老化的机制就失效了。 b)MaxTenuringThreshold设置的过小,“过早晋升”即对象不能在新生代充分被回收,大量短期对象被晋升到老年代,老年代空间迅速增长,引起频繁的Major GC。分代回收失去了意义,严重影响GC性能。
相同应用在不同时间的表现不同:特殊任务的执行或者流量成分的变化,都会导致对象的生命周期分布发生波动,那么固定的阈值设定,因为无法动态适应变化,会造成和上面相同的问题。
总结来说,为了更好的适应不同程序的内存情况,虚拟机并不总是要求对象年龄必须达到Maxtenuringthreshhold再晋级老年代。
GC日志显示,高峰期CMS在重标记(Remark)阶段耗时1.39s。Remark阶段是Stop-The-World(以下简称为STW)的,即在执行垃圾回收时,Java应用程序中除了垃圾回收器线程之外其他所有线程都被挂起,意味着在此期间,用户正常工作的线程全部被暂停下来,这是低延时服务不能接受的。本次优化目标是降低Remark时间。
新生代GC和老年代的GC是各自分开独立进行的,只有Minor GC时才会使用根搜索算法,标记新生代对象是否可达,也就是说虽然一些对象已经不可达,但在Minor GC发生前不会被标记为不可达,CMS也无法辨认哪些对象存活,只能全堆扫描(新生代+老年代)。由此可见堆中对象的数目影响了Remark阶段耗时。 分析GC日志可以得出同样的规律,Remark耗时>500ms时,新生代使用率都在75%以上。这样降低Remark阶段耗时问题转换成如何减少新生代对象数量。
新生代中对象的特点是“朝生夕灭”,这样如果Remark前执行一次Minor GC,大部分对象就会被回收。CMS就采用了这样的方式,在Remark前增加了一个可中断的并发预清理(CMS-concurrent-abortable-preclean),该阶段主要工作仍然是并发标记对象是否存活,只是这个过程可被中断。此阶段在Eden区使用超过2M时启动,当然2M是默认的阈值,可以通过参数修改。如果此阶段执行时等到了Minor GC,那么上述灰色对象将被回收,Reamark阶段需要扫描的对象就少了。
除此之外CMS为了避免这个阶段没有等到Minor GC而陷入无限等待,提供了参数CMSMaxAbortablePrecleanTime ,默认为5s,含义是如果可中断的预清理执行超过5s,不管发没发生Minor GC,都会中止此阶段,进入Remark。 根据GC日志红色标记2处显示,可中断的并发预清理执行了5.35s,超过了设置的5s被中断,期间没有等到Minor GC ,所以Remark时新生代中仍然有很多对象。
对于这种情况,CMS提供CMSScavengeBeforeRemark参数,用来保证Remark前强制进行一次Minor GC。
由于跨代引用的存在,CMS在Remark阶段必须扫描整个堆,同时为了避免扫描时新生代有很多对象,增加了可中断的预清理阶段用来等待Minor GC的发生。只是该阶段有时间限制,如果超时等不到Minor GC,Remark时新生代仍然有很多对象,我们的调优策略是,通过参数强制Remark前进行一次Minor GC,从而降低Remark阶段的时间。
更多思考
案例中只涉及老年代GC,其实新生代GC存在同样的问题,即老年代可能持有新生代对象引用,所以Minor GC时也必须扫描老年代。
JVM是如何避免Minor GC时扫描全堆的? 经过统计信息显示,老年代持有新生代对象引用的情况不足1%,根据这一特性JVM引入了卡表(card table)来实现这一目的。如下图所示:
卡表的具体策略是将老年代的空间分成大小为512B的若干张卡(card)。卡表本身是单字节数组,数组中的每个元素对应着一张卡,当发生老年代引用新生代时,虚拟机将该卡对应的卡表元素设置为适当的值。如上图所示,卡表3被标记为脏(卡表还有另外的作用,标识并发标记阶段哪些块被修改过),之后Minor GC时通过扫描卡表就可以很快的识别哪些卡中存在老年代指向新生代的引用。这样虚拟机通过空间换时间的方式,避免了全堆扫描。
总结来说,CMS的设计聚焦在获取最短的时延,为此它“不遗余力”地做了很多工作,包括尽量让应用程序和GC线程并发、增加可中断的并发预清理阶段、引入卡表等,虽然这些操作牺牲了一定吞吐量但获得了更短的回收停顿时间。
确定目标
GC日志如下图(在GC日志中,Full GC是用来说明这次垃圾回收的停顿类型,代表STW类型的GC,并不特指老年代GC),根据GC日志可知本次Full GC耗时1.23s。这个在线服务同样要求低时延高可用。本次优化目标是降低单次STW回收停顿时间,提高可用性。
优化
首先,什么时候可能会触发STW的Full GC呢? 1. Perm空间不足; 2. CMS GC时出现promotion failed和concurrent mode failure(concurrent mode failure发生的原因一般是CMS正在进行,但是由于老年代空间不足,需要尽快回收老年代里面的不再被使用的对象,这时停止所有的线程,同时终止CMS,直接进行Serial Old GC); 3. 统计得到的Young GC晋升到老年代的平均大小大于老年代的剩余空间; 4. 主动触发Full GC(执行jmap -histo:live [pid])来避免碎片问题。
然后,我们来逐一分析一下: - 排除原因2:如果是原因2中两种情况,日志中会有特殊标识,目前没有。 - 排除原因3:根据GC日志,当时老年代使用量仅为20%,也不存在大于2G的大对象产生。 - 排除原因4:因为当时没有相关命令执行。 - 锁定原因1:根据日志发现Full GC后,Perm区变大了,推断是由于永久代空间不足容量扩展导致的。
找到原因后解决方法有两种: 1. 通过把-XX:PermSize参数和-XX:MaxPermSize设置成一样,强制虚拟机在启动的时候就把永久代的容量固定下来,避免运行时自动扩容。 2. CMS默认情况下不会回收Perm区,通过参数CMSPermGenSweepingEnabled、CMSClassUnloadingEnabled ,可以让CMS在Perm区容量不足时对其回收。
由于该服务没有生成大量动态类,回收Perm区收益不大,所以我们采用方案1,启动时将Perm区大小固定,避免进行动态扩容。
优化结果
调整参数后,服务不再有Perm区扩容导致的STW GC发生。
小结
对于性能要求很高的服务,建议将MaxPermSize和MinPermSize设置成一致(JDK8开始,Perm区完全消失,转而使用元空间。而元空间是直接存在内存中,不在JVM中),Xms和Xmx也设置为相同,这样可以减少内存自动扩容和收缩带来的性能损失。虚拟机启动的时候就会把参数中所设定的内存全部化为私有,即使扩容前有一部分内存不会被用户代码用到,这部分内存在虚拟机中被标识为虚拟内存,也不会交给其他进程使用。
结合上述GC优化案例做个总结: 1. 首先再次声明,在进行GC优化之前,需要确认项目的架构和代码等已经没有优化空间。我们不能指望一个系统架构有缺陷或者代码层次优化没有穷尽的应用,通过GC优化令其性能达到一个质的飞跃。 2. 其次,通过上述分析,可以看出虚拟机内部已有很多优化来保证应用的稳定运行,所以不要为了调优而调优,不当的调优可能适得其反。 3. 最后,GC优化是一个系统而复杂的工作,没有万能的调优策略可以满足所有的性能指标。GC优化必须建立在我们深入理解各种垃圾回收器的基础上,才能有事半功倍的效果。