JDK 1.7之 ConcurrentHashMap 源码分析


转载请注明出处:http://blog.csdn.net/crazy1235/article/details/76795383


    • Segment HashEntry
    • 构造函数
    • put
      • hash
      • ensureSegment
      • Segmentput
      • rehash
    • get
    • remove
      • Segmentremove
    • replace
      • Segmentreplace
    • contains
    • clear
      • Segmentclear
    • size
    • 参考

JDK 1.5 引入了 ConcurrentHashMap

ConcurrentHashMap是线程安全且高效的HashMap。

HashTable容器使用synchronized来保证线程安全,但是在线程竞争激烈的情况下,HashTable的效率非常低。

当一个线程访问 HashTable 的同步方法时,其他线程也无法访问其他的同步方法,这样效率就很低下。

ConcurrentHashMap它采锁分段技术 来保证高效的并发操作!

ConcurrentHashMap把容器分为多个 segment(片段) ,每个片段有一把锁,当多线程访问容器里不同数据段的数据时,线程间就不会存在竞争关系;一个线程占用锁访问一个segment的数据时,并不影响另外的线程访问其他segment中的数据。

从下面两张图就可以看出 ConcurrentHashMap 的内部结构!

(图片转自网络,侵删)

JDK 1.7之 ConcurrentHashMap 源码分析_第1张图片

JDK 1.7之 ConcurrentHashMap 源码分析_第2张图片

对比于JDK1.7中的HashMap的结构,ConcurrentHashMap将数组每个元素作为一个segment–片段。

Segment的结构与HashMap类似,每个片段对应一个table数组和链表结构!

一个Segment里面包含一个HashEntry数组,每个HashEntry是一个链表结构,当对HashEntry数组的数据进行修改时,必须首先获得与它对应的Segment锁!


Segment & HashEntry

    /**
     * The segments, each of which is a specialized hash table.
     */
    final Segment[] segments;
    // 集成 ReentrantLock
    static final class Segment<K,V> extends ReentrantLock implements Serializable {
        private static final long serialVersionUID = 2249069246763182397L;

        static final int MAX_SCAN_RETRIES =
            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;

        // 每一个segment对应一个HashEntry数组
        transient volatile HashEntry[] table;

        // 总的元素个数
        transient int count;

        // 修改次数
        transient int modCount;

        // 阈值
        transient int threshold;

        // 加载因子
        final float loadFactor;

        // 构造函数
        Segment(float lf, int threshold, HashEntry[] tab) {
            this.loadFactor = lf;
            this.threshold = threshold;
            this.table = tab;
        }

        // 往segment添加一个元素
        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
            // ...
        }

        // 扩容数组,变为之前的两倍,重新打包之前的数据,然后把新的节点添加进去
        @SuppressWarnings("unchecked")
        private void rehash(HashEntry node) {
            // ...
        }

        // 
        private HashEntry scanAndLockForPut(K key, int hash, V value) {
            // ...
        }

        // 
        private void scanAndLock(Object key, int hash) {
            // ...
        }

        // 当value为空或者key,value值都匹配到了删除节点
        final V remove(Object key, int hash, Object value) {
            // ...
        }

        // 根据key替换节点的值
        final boolean replace(K key, int hash, V oldValue, V newValue) {
            // ...
        }

        // 根据key替换节点的值
        final V replace(K key, int hash, V value) {
            // ...
        }

        // 清空segment中的元素节点
        final void clear() {
            // ...
        }
    }
    /**
     * ConcurrentHashMap list entry. Note that this is never exported
     * out as a user-visible Map.Entry.
     */
    static final class HashEntry {
        final int hash;
        final K key;
        volatile V value;
        volatile HashEntry next;

        HashEntry(int hash, K key, V value, HashEntry next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        /**
         * Sets next field with volatile write semantics.  (See above
         * about use of putOrderedObject.)
         */
        final void setNext(HashEntry n) {
            UNSAFE.putOrderedObject(this, nextOffset, n);
        }

        // Unsafe mechanics
        static final sun.misc.Unsafe UNSAFE;
        static final long nextOffset;
        static {
            try {
                UNSAFE = sun.misc.Unsafe.getUnsafe();
                Class k = HashEntry.class;
                nextOffset = UNSAFE.objectFieldOffset
                    (k.getDeclaredField("next"));
            } catch (Exception e) {
                throw new Error(e);
            }
        }
    }

构造函数

// 默认初始容量
static final int DEFAULT_INITIAL_CAPACITY = 16;
// 默认加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 默认segment层级
static final int DEFAULT_CONCURRENCY_LEVEL = 16;
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// segment最小容量
static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
// 一个segment最大容量
static final int MAX_SEGMENTS = 1 << 16;
// 锁之前重试次数
static final int RETRIES_BEFORE_LOCK = 2;
public ConcurrentHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }
public ConcurrentHashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
    }
@SuppressWarnings("unchecked")
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        // 
        int sshift = 0;
        // segment数组的长度是由concurrentLevel计算来的,segment数组的长度是2的N次方,

        // 默认concurrencyLevel = 16, 所以ssize在默认情况下也是16,此时 sshift = 4

        // sshift相当于ssize从1向左移的次数

        int ssize = 1;
        while (ssize < concurrencyLevel) {
            ++sshift; 
            ssize <<= 1;
        }
        // 段偏移量,默认值情况下此时segmentShift = 28
        this.segmentShift = 32 - sshift;
        // 散列算法的掩码,默认值情况下segmentMask = 15
        this.segmentMask = ssize - 1;

        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;

        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
        Segment s0 =
            new Segment(loadFactor, (int)(cap * loadFactor),
                             (HashEntry[])new HashEntry[cap]);
        // 创建ssize长度的Segment数组
        Segment[] ss = (Segment[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }
  • initialCapacity 表示创建ConcurrentHashMap的初始容量。默认值是16

  • loadFactor 表示加载因子。当 ConcurrentHashMap中元素个数 > 最大容量 * loadFactor 时就需要进行扩容。

  • concurrencyLevel 表示并发的级别,也可以理解为segment数组的长度。Segment数组的长度 大于等于concurrencyLevel的第一个2的n次方。

  • 理想情况下,有concurrentLevel个线程同时访问不同的segment数据,这样这些线程之间互不干扰,达到了最高并发级别!


put

添加元素分为两步:

  1. 定位到segment
  2. 判断是否需要对segment中的HashEntry数组进行扩容,然后再在segment中进行插入操作
    public void putAll(Mapextends K, ? extends V> m) {
        for (Map.Entryextends K, ? extends V> e : m.entrySet())
            put(e.getKey(), e.getValue());
    }
    @SuppressWarnings("unchecked")
    public V putIfAbsent(K key, V value) {
        Segment s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment)UNSAFE.getObject
             (segments, (j << SSHIFT) + SBASE)) == null)
            s = ensureSegment(j);
        return s.put(key, hash, value, true);
    }
    @SuppressWarnings("unchecked")
    public V put(K key, V value) {
        Segment s;
        if (value == null) // 不允许value为空
            throw new NullPointerException();
        int hash = hash(key); // 计算hash值
        int j = (hash >>> segmentShift) & segmentMask; // 定位属于哪个segment中
        if ((s = (Segment)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);
        return s.put(key, hash, value, false); // 将键值对保存到对应的segment中
    }

ConcurrentHashMap使用分段锁的机制来保护不同Segment的数据,那么插入和获取元素的时候,就需要先定位到Segment。

hash

    // ?
    private transient final int hashSeed = randomHashSeed(this);

    private static int randomHashSeed(ConcurrentHashMap instance) {
        if (sun.misc.VM.isBooted() && Holder.ALTERNATIVE_HASHING) {
            return sun.misc.Hashing.randomHashSeed(instance);
        }

        return 0;
    }
    private int hash(Object k) {
        int h = hashSeed;

        if ((0 != h) && (k instanceof String)) {
            return sun.misc.Hashing.stringHash32((String) k);
        }

        h ^= k.hashCode();

        // 此处使用的是Wang/Jenkins hash的变种算法!

        h += (h <<  15) ^ 0xffffcd7d;
        h ^= (h >>> 10);
        h += (h <<   3);
        h ^= (h >>>  6);
        h += (h <<   2) + (h << 14);
        return h ^ (h >>> 16);
    }

此散列算法目的就是减少冲突,使元素能够比较均匀的分散到各个Segment中,从而提高整个容器的效率。

计算得到散列的hash值之后,就定位Segment数组中的哪个片段了。、

(hash >>> segmentShift) & segmentMask

默认情况下,segmentShift = 28, segmentMask = 15。
首先hash右移28位,让高四位参与运算。然后在于segmentMask进行与操作。就得到了segment数组的下标。

举例:

hash(key)运算得到的值是一个32位的整数。

默认情况下,this.segmentShift = 32 - sshift = 32 - 4 = 28。

JDK 1.7之 ConcurrentHashMap 源码分析_第3张图片


ensureSegment

这个函数的目的就是找到对应的segment。

    @SuppressWarnings("unchecked")
    private Segment ensureSegment(int k) {
        final Segment[] ss = this.segments;
        long u = (k << SSHIFT) + SBASE; // raw offset
        Segment seg;
        if ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u)) == null) {
            Segment proto = ss[0]; // use segment 0 as prototype
            int cap = proto.table.length;
            float lf = proto.loadFactor;
            int threshold = (int)(cap * lf);
            HashEntry[] tab = (HashEntry[])new HashEntry[cap];
            if ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u))
                == null) { // recheck
                Segment s = new Segment(lf, threshold, tab);
                while ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u))
                       == null) {
                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                        break;
                }
            }
        }
        return seg;
    }

找到了对应的segment之后,就可以往里面put值了

return s.put(key, hash, value, false);

Segment#put()

    final V put(K key, int hash, V value, boolean onlyIfAbsent) {
            HashEntry node = tryLock() ? null :
                    scanAndLockForPut(key, hash, value);
            V oldValue;
            try {
                // 每一个segment对应一个HashEntry数组
                HashEntry[] tab = table;
                // 计算对应HashEntry数组的下标

                // 每个segment中数组的长度都是2的N次方,所以这里经过运算之后,取的是hash的低几位数据
                int index = (tab.length - 1) & hash;
                // 定位到HashEntry数组中的某个结点(对应链表的表头结点)
                HashEntry first = entryAt(tab, index);
                // 遍历链表
                for (HashEntry e = first;;) {
                    if (e != null) { // 如果链表不为空
                        K k;
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                            oldValue = e.value;
                            if (!onlyIfAbsent) {
                                e.value = value;
                                ++modCount;
                            }
                            break;
                        }
                        e = e.next;
                    }
                    else { // 如果链表为空(表头为空)
                        if (node != null)
                            // 将新节点插入链表作为表头
                            node.setNext(first);
                        else
                            // 根据key value 创建结点并插入链表
                            node = new HashEntry(hash, key, value, first);
                        int c = count + 1;
                        // 判断元素个数是否超过了阈值或者segment中数组的长度超过了MAXIMUM_CAPACITY,如果满足条件则rehash扩容!
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                            rehash(node);
                        else // 不需要扩容时,将node放到数组(HashEntry[])中对应的位置
                            setEntryAt(tab, index, node);
                        ++modCount;
                        count = c;
                        oldValue = null;
                        break;
                    }
                }
            } finally {
                unlock(); // 解锁
            }
            return oldValue; // 返回旧value值
        }

rehash

下面来看当需要扩容的时候:

        /**
         * 两倍于之前的容量
         */
        @SuppressWarnings("unchecked")
        private void rehash(HashEntry node) {

            HashEntry[] oldTable = table;
            int oldCapacity = oldTable.length;
            // 扩大1倍(左移一位)
            int newCapacity = oldCapacity << 1;
            // 计算新的阈值
            threshold = (int)(newCapacity * loadFactor);
            // 创建新的数组
            HashEntry[] newTable =
                (HashEntry[]) new HashEntry[newCapacity];
            // mask
            int sizeMask = newCapacity - 1;
            // 遍历旧数组数据
            for (int i = 0; i < oldCapacity ; i++) {
                HashEntry e = oldTable[i]; // 对应一个链表的表头结点
                if (e != null) {
                    HashEntry next = e.next;
                    // 计算e对应的这条链表在新数组中对应的下标
                    int idx = e.hash & sizeMask; 
                    if (next == null)   //  只有一个结点时直接放入(新的)数组中
                        newTable[idx] = e;
                    else { // 链表有多个结点时:
                        HashEntry lastRun = e; // 就链表的表头结点做为新链表的尾结点
                        int lastIdx = idx;
                        for (HashEntry last = next;
                             last != null;
                             last = last.next) {
                            // 旧数组中一个链表中的数据并不一定在新数组中属于同一个链表,所以这里需要每次都重新计算
                            int k = last.hash & sizeMask;
                            if (k != lastIdx) {
                                lastIdx = k;
                                lastRun = last;
                            }
                        }
                        // lastRun(和之后的元素)插入数组中。
                        newTable[lastIdx] = lastRun;
                        // 从(旧链表)头结点向后遍历,遍历到最后一组不同于前面hash值的组头。
                        for (HashEntry p = e; p != lastRun; p = p.next) {
                            V v = p.value;
                            int h = p.hash;
                            int k = h & sizeMask;
                            HashEntry n = newTable[k];
                            newTable[k] = new HashEntry(h, p.key, v, n); // 拼接链表
                        }
                    }
                }
            }
            // 将之前的旧数据都添加到新的结构中之后,才会插入新的结点(依旧是插入表头)
            int nodeIndex = node.hash & sizeMask; // add the new node
            node.setNext(newTable[nodeIndex]);
            newTable[nodeIndex] = node;
            table = newTable;
        }

以一条旧链表数据为例:

细心的朋友可以发现,这里并不一定遍历所有的链表元素,因为当后面的节点进过运算在新数据中的hash一样的话,只需要把这一组的头结点插入,后面的节点就会被带入其中。

所以,下面的for循环操作的是链表中lastRun节点之前的节点

for (HashEntry<K,V> p = e; p != lastRun; p = p.next) 

JDK 1.7之 ConcurrentHashMap 源码分析_第4张图片


get

  • 首先找到对应的segment

  • 然后找到segment中对应HashEntry链表

  • 遍历链表即可

    public V get(Object key) {
        Segment s; // manually integrate access methods to reduce overhead
        HashEntry[] tab;
        int h = hash(key);
        // 首先计算出segment数组的下标  ((h >>> segmentShift) & segmentMask))
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        if ((s = (Segment)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) { // 根据下标找到segment
            // 然后(tab.length - 1) & h) 得到对应HashEntry数组的下标
            // 遍历链表
            for (HashEntry e = (HashEntry) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;

                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }

remove

public V remove(Object key) {
        // 计算hash值
        int hash = hash(key);
        // 根据hash值找到对应的segment
        Segment s = segmentForHash(hash);
        // 调用Segment.remove 函数
        return s == null ? null : s.remove(key, hash, null);
    }
public boolean remove(Object key, Object value) {
        int hash = hash(key);
        Segment s;
        return value != null && (s = segmentForHash(hash)) != null &&
            s.remove(key, hash, value) != null;
    }

Segment#remove

        /**
         * Remove; match on key only if value null, else match both.
         */
        final V remove(Object key, int hash, Object value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry[] tab = table;
                // 计算HashEntry数组下标
                int index = (tab.length - 1) & hash;
                // 找到头结点
                HashEntry e = entryAt(tab, index);
                HashEntry pred = null;
                while (e != null) {
                    K k;
                    HashEntry next = e.next;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) { // 找到对应节点
                        V v = e.value;
                        if (value == null || value == v || value.equals(v)) {
                            if (pred == null)
                                // 当pred为空时,表示要移除的是链表的表头节点,重新设置链表
                                setEntryAt(tab, index, next);
                            else
                                pred.setNext(next);
                            ++modCount;
                            --count;
                            // 记录旧value值
                            oldValue = v;
                        }
                        break;
                    }
                    pred = e;
                    e = next;
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

replace

替换元素的值

public boolean replace(K key, V oldValue, V newValue) {
        int hash = hash(key);
        // oldValue或者newValue为空时,抛出空指针异常
        if (oldValue == null || newValue == null)
            throw new NullPointerException();
        // 找到segment
        Segment s = segmentForHash(hash);
        // 调用Segment.replace
        return s != null && s.replace(key, hash, oldValue, newValue);
    }
public V replace(K key, V value) {
        int hash = hash(key);
        if (value == null)
            throw new NullPointerException();
        Segment s = segmentForHash(hash);
        // 调用Segment.replace
        return s == null ? null : s.replace(key, hash, value);
    }

Segment#replace

final boolean replace(K key, int hash, V oldValue, V newValue) {
            if (!tryLock())
                scanAndLock(key, hash);
            boolean replaced = false;
            try {
                HashEntry e;
                // entryForHash 用来找到链表头,然后for循环遍历链表
                for (e = entryForHash(this, hash); e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        // 当oldValue对应上了数据时,才会用newValue替换,然后返回true
                        if (oldValue.equals(e.value)) {
                            e.value = newValue;
                            ++modCount;
                            replaced = true;
                        }
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return replaced;
        }

final V replace(K key, int hash, V value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry e;
                for (e = entryForHash(this, hash); e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        // 这里没有判断value值,直接替换为新value值,返回旧value值
                        oldValue = e.value;
                        e.value = value;
                        ++modCount;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

contains

判断是否包含key值对应的数据(节点)

1- 找到segment
2- 找到HashEntry
3- 遍历链表

    @SuppressWarnings("unchecked")
    public boolean containsKey(Object key) {
        Segment s; // same as get() except no need for volatile value read
        HashEntry[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        // 找到对应的segment分组数据
        if ((s = (Segment)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            // 找到对应链表并遍历
            for (HashEntry e = (HashEntry) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                // 判断
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return true;
            }
        }
        return false;
    }

判断是否包含value值对应的数据(节点)

    public boolean contains(Object value) {
        return containsValue(value);
    }
    public boolean containsValue(Object value) {
        // Same idea as size()
        if (value == null)
            throw new NullPointerException();
        final Segment[] segments = this.segments;
        boolean found = false;
        long last = 0;
        // 重试次数
        int retries = -1;
        try {
            outer: for (;;) { // 死循环

                // 当重试次数等于3次时,直接遍历每个segment并上锁。
                if (retries++ == RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        ensureSegment(j).lock(); // force creation
                }

                long hashSum = 0L;
                int sum = 0;

                // 遍历segment数组
                for (int j = 0; j < segments.length; ++j) {
                    HashEntry[] tab;
                    Segment seg = segmentAt(segments, j);
                    if (seg != null && (tab = seg.table) != null) {
                        // 遍历某个segment对应的HashEntry数组
                        for (int i = 0 ; i < tab.length; i++) {
                            HashEntry e;
                            // 遍历HshEntry对应的链表
                            for (e = entryAt(tab, i); e != null; e = e.next) {
                                V v = e.value;

                                // 如果找到了跳出outer循环
                                if (v != null && value.equals(v)) {
                                    found = true;
                                    break outer;
                                }
                            }
                        }
                        // 记录总的修改次数
                        sum += seg.modCount;
                    }
                }
                // 如果前后两次得到的修改次数一致,就表示查找过程中没有其他线程修改元素,这是跳出循环
                if (retries > 0 && sum == last)
                    break;

                // last保存上一次加起来的总修改次数
                last = sum;
            }
        } finally {
            if (retries > RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    segmentAt(segments, j).unlock();
            }
        }
        return found;
    }

在判断是否存在包含某个value时,有可能会出现另外一个线程插入一个节点,后者修改了一个节点的value数据。

所以为了保证准确定,该函数允许有三次机会不加锁遍历segment,如果前后两次遍历segment之后发现modeCound总数是一样的,则表示前后过程中没有数据被修改,则可以使用遍历过程中的结果返回。

如果三次遍历之后,发现前后modeCount数据不一致,则直接遍历所有的segment并加锁,然后进行判断


clear

 public void clear() {
        final Segment[] segments = this.segments;
        // 遍历所有的segment清空
        for (int j = 0; j < segments.length; ++j) {
            Segment s = segmentAt(segments, j);
            if (s != null)
                s.clear();
        }
    }

Segment#clear

    final void clear() {
            lock(); // 上锁
            try {
                HashEntry[] tab = table;
                for (int i = 0; i < tab.length ; i++)
                    setEntryAt(tab, i, null); // 置空
                ++modCount;
                count = 0;
            } finally {
                unlock(); // 解锁
            }
        }

size

计算 size 的思想类似于 containValue

    public int size() {
        // 
        final Segment[] segments = this.segments;
        int size;
        boolean overflow; // true if size overflows 32 bits
        long sum;         // sum of modCounts
        long last = 0L;   // previous sum
        int retries = -1; // first iteration isn't retry
        try {

            // 死循环
            for (;;) {

                // 当重试次数等于3次时,直接遍历每个segment并上锁。
                if (retries++ == RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        ensureSegment(j).lock(); // force creation
                }
                sum = 0L;
                size = 0;

                // 遍历segment数组
                for (int j = 0; j < segments.length; ++j) {
                    Segment seg = segmentAt(segments, j);
                    if (seg != null) {
                        sum += seg.modCount;

                        // 判断是否数据溢出

                        // 注意这里计算元素总个数  (size += c)
                        if (c < 0 || (size += c) < 0)
                            overflow = true;
                    }
                }
                // 如果前后两次数据一致,则可以跳出循环
                if (sum == last)
                    break;
                last = sum;
            }
        } finally {
            if (retries > RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    segmentAt(segments, j).unlock();
            }
        }
        // 返回总元素个数
        return overflow ? Integer.MAX_VALUE : size;
    }

参考

https://my.oschina.net/hosee/blog/639352
http://blog.csdn.net/javazejian/article/details/76167357
https://my.oschina.net/hosee/blog/607677
http://www.importnew.com/22007.html
http://blog.csdn.net/xuefeng0707/article/details/40834595
http://www.cnblogs.com/ITtangtang/p/3948786.html
http://www.importnew.com/21781.html
http://www.importnew.com/15845.html

你可能感兴趣的:(Java开发,Android高分局,Android从零单排)