Opencv学习笔记5:Opencv处理彩虹图、铜色图、灰度反转图

一、概述:

人类能够观察到的光的波长范围是有限的,并且人类视觉有一个特点,只能分辨出二十几种灰度,也就是说即使采集到的灰度图像分辨率超级高,有上百个灰度级,但是很遗憾,人们只能看出二十几个,也就是说信息损失了五十倍。但人类视觉对彩色的分辨能力相当强,能够分辨出几千种色度,所以在实际应用中,可以将灰度图转变成彩虹图或者伪彩图等根据需求的彩色图。

二、彩虹图:

主要思路:把灰度图对应的0~255的数值分别转成彩虹色:红、橙、黄、绿、青、蓝,这里没有使用紫色,是因为紫色的效果并不好。

//彩虹图的颜色分配取一下值
//     R G B gray

//----------------------------------

// 红 255, 0, 0 255

// 橙 255, 127, 0 204

// 黄 255, 255, 0 153

// 绿 0, 255, 0 102

// 青 0, 255, 255 51

// 蓝 0, 0, 255 0

代码:

Mat gray2rainbow(const Mat& scaledGray)
{
    Mat outputRainbow(scaledGray.size(), CV_8UC3);
    unsigned char grayValue;
    for (int y = 0; y < scaledGray.rows; y++)
        for (int x = 0; x < scaledGray.cols; x++)
        {
            grayValue = scaledGray.at(y, x);
            Vec3b& pixel = outputRainbow.at(y, x);
            if (grayValue <= 51)
            {
                pixel[0] = 255;
                pixel[1] = grayValue * 5;
                pixel[2] = 0;
            }
            else if (grayValue <= 102)
            {
                grayValue -= 51;
                pixel[0] = 255 - grayValue * 5;
                pixel[1] = 255;
                pixel[2] = 0;
            }
            else if (grayValue <= 153)
            {
                grayValue -= 102;
                pixel[0] = 0;
                pixel[1] = 255;
                pixel[2] = grayValue * 5;
            }
            else if (grayValue <= 204)
            {
                grayValue -= 153;
                pixel[0] = 0;
                pixel[1] = 255 - static_castchar>(grayValue * 128.0 / 51 + 0.5);
                pixel[2] = 255;
            }
            else if (grayValue <= 255)
            {
                grayValue -= 204;
                pixel[0] = 0;
                pixel[1] = 127 - static_castchar>(grayValue * 127.0 / 51 + 0.5);
                pixel[2] = 255;
            }
        }
 
    return outputRainbow;
}

三、伪彩图

伪彩色图片的处理,就是用RGB三色交叉,不同的彩色表示不同的灰度值,将一幅灰度图转变成为一幅彩色图片。

Mat gray2pseudocolor(const Mat& scaledGray)
{
    Mat outputPseudocolor(scaledGray.size(), CV_8UC3);
    unsigned char grayValue;
    for (int y = 0; y < scaledGray.rows; y++)
        for (int x = 0; x < scaledGray.cols; x++)
        {
            grayValue = scaledGray.at(y, x);
            Vec3b& pixel = outputPseudocolor.at(y, x);
            pixel[0] = abs(255 - grayValue);
            pixel[1] = abs(127 - grayValue);
            pixel[2] = abs(0 - grayValue);
        }
 
    return outputPseudocolor;
}

 四、铜色图

将R去0,G、B两色交叉。

Mat gray2CopperColor(const Mat& scaledGray)
{
    Mat outputCopperColor(scaledGray.size(), CV_8UC3);
    unsigned char grayValue;
    for (int y = 0; y < scaledGray.rows; y++)
        for (int x = 0; x < scaledGray.cols; x++)
        {
            grayValue = scaledGray.at(y, x);
            Vec3b& pixel = outputCopperColor.at(y, x);
            pixel[0] = abs(0);
            pixel[1] = abs(grayValue);
            pixel[2] = abs(grayValue);
        }

    return outputCopperColor;
}

 

 五、灰度反转

将图像进行灰度反转处理,即将灰度值为x的像素点转变为255-x。

利用Opencv中bitwise_not()函数可实现,没必要一个像素点一个像素点处理。

Mat gray2disColor(const Mat& scaledGray)
{

    Mat disColor(scaledGray.size(), CV_8UC3);
    bitwise_not(disColor, scaledGray);
    return disColor;
}

 

六、灰度图

将一幅彩色图片转换为灰度图

Mat scaleGray(const Mat& inputGray)
{
    Mat outputGray(inputGray.size(), CV_8U);
    unsigned char grayValue, maxValue = 1;
    for (int y = 0; y < inputGray.rows; y++)
        for (int x = 0; x < inputGray.cols; x ++)
        {
            grayValue = inputGray.at(y, x);
            maxValue = max(maxValue, grayValue);
        }
         
    float scale = 255.0 / maxValue;   
    for (int y = 0; y < inputGray.rows; y++)
        for (int x = 0; x < inputGray.cols; x ++)
        {
            outputGray.at(y, x) = static_castchar>(inputGray.at(y, x) * scale + 0.5);
        }
 
    return outputGray;
}

 

七、完整代码

 

转载于:https://www.cnblogs.com/aiguona/p/9936638.html

你可能感兴趣的:(Opencv学习笔记5:Opencv处理彩虹图、铜色图、灰度反转图)