Elasticsearch(七)信息检索与结果过滤

Elasticsearch: 6.4.2

聚合分类:

Bucketing聚合: 类似SQL中的GROUP BY;基于检索构成了逻辑文档组,满足特定规则的文档放置到一个桶里,每一个桶关联一个key; 分桶聚合可以嵌套分桶聚合。

Metric聚合: 基于一组文档进行聚合。所有的文档在一个检索集合里,文档被分成逻辑的分组; 对一个数据集求最大、最小、和、平均值等指标的聚合。

Matrix聚合: 此功能是实验性的,可在将来的版本中完全更改或删除;在多个字段上操作,并根据从请求的文档中提取的值生成矩阵结果。

Pipeline聚合:对聚合的结果而不是原始数据集进行操作。

测试数据

POST userinfo/doc/_bulk
{
  "index": {
    "_id": "1"
  }
}
{
  "username": "alfred way",
  "job": "java engineer",
  "age": 18,
  "birth": "1990-01-02",
  "isMarried": false,
  "salary": 10000
}
{
  "index": {
    "_id": "2"
  }
}
{
  "username": "tom",
  "job": "java senior engineer",
  "age": 28,
  "birth": "1980-05-07",
  "isMarried": true,
  "salary": 30000
}
{
  "index": {
    "_id": "3"
  }
}
{
  "username": "lee",
  "job": "ruby engineer",
  "age": 22,
  "birth": "1985-08-07",
  "isMarried": false,
  "salary": 15000
}
{
  "index": {
    "_id": "4"
  }
}
{
  "username": "Nick",
  "job": "web engineer",
  "age": 23,
  "birth": "1989-08-07",
  "isMarried": false,
  "salary": 8000
}
{
  "index": {
    "_id": "5"
  }
}
{
  "username": "Niko",
  "job": "web engineer",
  "age": 18,
  "birth": "1994-08-07",
  "isMarried": false,
  "salary": 5000
}
{
  "index": {
    "_id": "6"
  }
}
{
  "username": "Michell",
  "job": "ruby engineer",
  "age": 26,
  "birth": "1987-08-07",
  "isMarried": false,
  "salary": 12000
}
  • Metric聚合

    最值、求和、均值

    POST /userinfo/doc/_search
    {
      "size": 0,
      "aggs": {
        "avg_grade": {
          "avg": {  # 可以使用max、min、sum
            "field": "salary"
          }
        }
      }
    }
    

    Cardinality

    类似于SQL中的district count

    POST /userinfo/doc/_search
    {
      "size": 0, 
      "aggs": {
        "type_count": {
          "cardinality": {
            "field": "job.keyword"
          }
        }
      }
    }
    

    Stats

    返回一系列数值类型的统计值,包括min,max,avg,sum,count。

    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "stats_age":{
                "stats":{
                    "field":"age"
                }
            }
        }
    }
    

    Extended Stats

    Stats聚合的扩展,包含更多统计数据,例如:方差,标准差等。

    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "stats_age":{
                "extended_stats":{
                    "field":"age"
                }
            }
        }
    }
    

    Percentiles

    # 百分位数统计
    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "per_age":{
                "percentiles":{
                    "field":"salary"
                }
            }
        }
    }
    # 针对特定值计算百分位数
    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "per_age":{
                "percentile_ranks":{
                    "field":"salary",
                    "values":[
                        11000,
                        30000
                    ]
                }
            }
        }
    }
    # 针对特定百分位数计算对应的值 
    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "per_age":{
                "percentiles":{
                    "field":"salary",
                    "percents" : [80, 95, 99, 99.9] 
                }
            }
        }
    }
    

    Top Hits

    一般用于分桶后获取该桶内最匹配的顶部文档详情数据

    # 先根据job分桶,后在桶内根据age排序
    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "jobs":{
                "terms":{
                    "field":"job.keyword",
                    "size":10
                },
                "aggs":{
                    "top_employee":{
                        "top_hits":{
                            "size":10,
                            "sort":[
                            {
                                "age":{
                                    "order":"desc"
                                }
                            }
                            ]
                        }
                    }
                }
            }
        }
    }
    
  • Bucketing聚合

    Terms

    改分桶策略最简单,直接根据term分桶,如果是text类型,则按照分析器处理后的结果分桶。

    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "jobs":{
                "terms":{
                    "field":"job.keyword",
                    "size":10
                }
            }
        }
    }
    

    Range

    通过指定数值的范围来设定分桶规则

    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "salary_range":{
                "range":{
                    "field":"salary",
                    "ranges":[
                    {
                        "to":10000
                    },
                    {
                        "from":10000,
                        "to":20000
                    },
                    {
                        "from":20000
                    }
                    ]
                }
            }
        }
    }
    

    Date Range

    通过指定日期的范围来设定分桶规则

    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "date_range":{
                "range":{
                    "field":"birth",
                    "format":"yyyy",
                    "ranges":[
                    {
                        "from":"1980",
                        "to":"1990"
                    },
                    {
                        "from":"1990",
                        "to":"2000"
                    },
                    {   
                        "from":"2000"
                    }
                    ]
                }
            }
        }
    }
    

    Historgram

    以固定间隔来分割数据

    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "salary_hist":{
                "histogram":{
                    "field":"salary",
                     "interval":5000,
                     "extended_bounds":{
                        "min":0,
                        "max":40000
                     }
                }
            }
        }
    }
    

    Date Historgram

    针对日期的直方图

    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "salary_hist":{
                "date_histogram":{
                    "field":"birth",
                     "interval":"year",
                     "format":"yyyy"
                }
            }
        }
    }
    

    Filter

    将满足过滤条件的文档放入桶中

    POST /userinfo/doc/_search
    {
      "size": 0, 
      "aggs": {
        "salary_aggs": {
          "filter": {
            "range": {
              "salary": {
                "gte": 10000
              }
            }
          },
          "aggs": {
            "avg_salary": {
              "avg": {
                "field": "salary"
              }
            }
          }
        }
      }
    }
    

    Missing

    统计缺少指定字段的文档个数。

    POST /userinfo/doc/_search
    {
      "size": 0, 
      "aggs": {
        "miss_aggs": {
          "missing": {
            "field": "phone"
          }
        }
      }
    }
    
  • Pipeline聚合

    针对聚合分析的结果再次进行聚合分析,而且支持链式调用。

    Pipeline的分析结果会输出到原结果中,根据输出位置的不同,分为以下两类:

    1. Parent结果内嵌到现有的聚合分析结果中
    • Derivative

    • Moving Average

    • Cumulative Sum

    1. Sibling结果与现有聚合分析结果同级
    • Max/Min/Avg/Sum Bucket

    • Stats/Extended Stats Bucket

    • Percentitles Bucket

    Sibing-Derivative

    先根据job分桶并计算各个分桶的avg值,然后输出avg最小的桶名称和值

    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "jobs":{
                "terms":{
                    "field":"job.keyword",
                    "size":10
                },
                "aggs":{
                    "avg_salary":{
                        "avg":{
                            "field":"salary"
                        }
                    }
                }
            },
            "min_salary_by_job":{
                "min_bucket":{
                    "buckets_path":"jobs>avg_salary"
                }
            }
        }
    }
    

    先根据job分桶并计算各个分桶的avg值,然后对所有bucket进行stats分析

    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "jobs":{
                "terms":{
                    "field":"job.keyword",
                    "size":10
                },
                "aggs":{
                    "avg_salary":{
                        "avg":{
                            "field":"salary"
                        }
                    }
                }
            },
            "stats_salary_by_job":{
                "stats_bucket":{
                    "buckets_path":"jobs>avg_salary"
                }
            }
        }
    }
    

    Parent-Derivative

    计算bucket的导数

    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "birth":{
                "date_histogram":{
                    "field":"birth",
                    "interval":"year",
                    "min_doc_count":0
                },
                "aggs":{
                    "avg_salary":{
                        "avg":{
                            "field":"salary"
                        }
                    },
                    "derivative_avg_salary":{
                        "derivative":{
                            "buckets_path":"avg_salary"
                        }
                    }
                }
            }
        }
    }
    
  • Bucket+Metric聚合分析

    先根据job进行term分桶策略,然后再对每一个分桶进行range分桶策略

    POST /userinfo/doc/_search
    {
        "size":0,
        "aggs":{
            "jobs":{
                "terms":{
                    "field":"job.keyword",
                    "size":10
                },
                "aggs":{
                    "age_range":{
                        "range":{
                            "field":"age",
                            "ranges":[
                            {"to":20},
                            {"from":20,"to":30},
                            {"from":30}
                            ]
                        }
                    }
                }
            }
        }
    }
    
  • 搜索提示

    _suggestURI已经被_search所替代,使用suggest属性。

    POST /userinfo/doc/_search
    {
      "query": {
        "match": {
          "job": "web"
        }
      },
      "suggest": {
        "me_SUGGESTION": {
          "text": "web",
          "term": {
            "field": "job"
          }
        }
      }
    }
    

你可能感兴趣的:(Elasticsearch)