Leetcode题解-747. Min Cost Climbing Stairs

Leetcode题解-747. Min Cost Climbing Stairs

On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).

Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.

Example 1:
Input: cost = [10, 15, 20]
Output: 15
Explanation: Cheapest is start on cost[1], pay that cost and go to the top.

Example 2:
Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
Output: 6
Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].

Note:

  1. cost will have a length in the range [2, 1000].
  2. Every cost[i] will be an integer in the range [0, 999].

题意

这是一道动态规划的题目,一个人爬梯子,每次可以向上爬一步或者两步,需要付出当前位置标志的费用,求爬完梯子的最低费用。

思路

到达梯子每一个位置所花费的费用是前一个位置的费用+到达前一个位置已经花费的费用和前两个位置的费用+到达前两个位置已经花费的费用之中小的一个,动态方程是:
f[0] = 0; //起始位置可以是第0个位置,所以已经花费费用为0
f[1] = 0; //起始位置可以是第1个位置,所以已经花费费用为0
f[i] = min{f[i-1] + cost[i-1], f[i-2] + cost[i-2]} (i >= 2)
解是f[n](n为梯子长度)

代码

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int num = cost.size();
        if(num == 1) return cost[0];
        int f[1010];
        f[0] = 0;
        f[1] = 0;
        for(int i = 2; i <= num; i++){
            int temp1 = cost[i-1] + f[i-1];
            int temp2 = cost[i-2] + f[i-2];
            f[i] = (temp1 < temp2) ? temp1 : temp2;
        }
        return f[num];
    }
};

你可能感兴趣的:(Leetcode)