数据结构与算法之 “排序”

一、概述

数据结构与算法之 “排序”_第1张图片
排序算法中最经典的、最常用的:冒泡排序、插入排序、选择排序、归并排序、快速排序、计数排序、基数排序、桶排序。
数据结构与算法之 “排序”_第2张图片

1.1、如何分析一个“排序算法”?

学习排序算法,除了学习它的算法原理、代码实现之外,更重要的是要学会如何评价、分析一个排序算法。下面是衡量的几个方面。

  • 排序算法的执行效率
    • 最好情况、最坏情况、平均情况时间复杂度
      在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。除此之外,还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。
      为什么要区分这三种时间复杂度呢?
      第一,有些排序算法会区分,为了好对比,所以我们最好都做一下区分。第二,对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。
    • 时间复杂度的系数、常数 、低阶
      时间复杂度反应的是数据规模 n 很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是 10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。
    • 比较次数和交换(或移动)次数
      基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。
  • 排序算法的内存消耗
    算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。
  • 排序算法的稳定性
    如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。这种排序算法叫作稳定的排序算法;如果前后顺序发生变化,那对应的排序算法就叫作不稳定的排序算法。
    为什么要考察排序算法的稳定性呢?
    在真正软件开发中,我们要排序的往往不是单纯的整数,而是一组对象,我们需要按照对象的某个 key 来排序。比如先对对象的某个元素排序,然后再对另一个元素排序,只有使用排序算法才是有意义的。

二、排序算法

首先看看三种时间复杂度为 O(n2) 的排序算法,冒泡排序、选择排序,可能就纯粹停留在理论的层面了,学习的目的也只是为了开拓思维,实际开发中应用并不多,但是插入排序还是挺有用的。
但是实现代码都非常简单,对于小规模数据的排序,用起来非常高效。但是在大规模数据排序的时候,这个时间复杂度还是有点高,

2.1、冒泡排序(Bubble Sort)

冒泡这个词用的很生动,每一轮使最值像水泡一样冒出来,剩下的值继续冒泡,每一轮都能得到剩下值的最值,n次后就能将所有的数据排序。

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。

当然冒泡排序可以优化:当某次冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作
代码实现:

// 冒泡排序,a 表示数组,n 表示数组大小
public void bubbleSort(int[] a, int n) {
  if (n <= 1) return;
 
 for (int i = 0; i < n; ++i) {
    // 提前退出冒泡循环的标志位
    boolean flag = false;
    for (int j = 0; j < n - i - 1; ++j) {
      if (a[j] > a[j+1]) { // 交换
        int tmp = a[j];
        a[j] = a[j+1];
        a[j+1] = tmp;
        flag = true;  // 表示有数据交换      
      }
    }
    if (!flag) break;  // 没有数据交换,提前退出
  }
}

冒泡排序是原地排序算法、稳定的排序算法,时间复杂度就是 O( n 2 n^2 n2)。

2.2、插入排序(Insertion Sort)

一个有序的数组,我们往里面添加一个新的数据后,如何继续保持数据有序呢?
很简单,我们只要遍历数组,找到数据应该插入的位置将其插入即可。
这是一个动态排序的过程,即动态地往有序集合中添加数据,我们可以通过这种方法保持集合中的数据一直有序。而对于一组静态数据,我们也可以借鉴上面讲的插入方法,来进行排序,于是就有了插入排序算法。

插入排序具体是如何借助上面的思想来实现排序的呢?

首先,我们将数组中的数据分为两个区间,已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。

比如:要排序的数据是 4,5,6,1,3,2,其中左侧为已排序区间,右侧是未排序区间。
数据结构与算法之 “排序”_第3张图片
插入排序也包含两种操作,一种是元素的比较,一种是元素的移动。当我们需要将一个数据 a 插入到已排序区间时,需要拿 a 与已排序区间的元素依次比较大小,找到合适的插入位置。找到插入点之后,我们还需要将插入点之后的元素顺序往后移动一位,这样才能腾出位置给元素 a 插入。

对于不同的查找插入点方法(从头到尾、从尾到头),元素的比较次数是有区别的。但对于一个给定的初始序列,移动操作的次数总是固定的,就等于逆序度。

// 插入排序,a 表示数组,n 表示数组大小
public void insertionSort(int[] a, int n) {
  if (n <= 1) return;
 
  for (int i = 1; i < n; ++i) {
    int value = a[i];
    int j = i - 1;
    // 查找插入的位置
    for (; j >= 0; --j) {
      if (a[j] > value) {
        a[j+1] = a[j];  // 数据移动
      } else {
        break;
      }
    }
    a[j+1] = value; // 插入数据
  }
}

插入排序是原地排序算法、稳定的排序算法,时间复杂度为 O( n 2 n^2 n2)。

2.3、选择排序(Selection Sort)

选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。

数据结构与算法之 “排序”_第4张图片
选择排序空间复杂度为 O(1),是一种原地排序算法。选择排序的最好情况时间复杂度、最坏情况和平均情况时间复杂度都为 O(n2)。选择排序是一种不稳定的排序算法。从前面画的那张图中,选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。正是因此,相对于冒泡排序和插入排序,选择排序就稍微逊色了。

2.4、为什么插入排序要比冒泡排序更受欢迎呢?

冒泡排序和插入排序的时候讲到,冒泡排序不管怎么优化,元素交换的次数是一个固定值,是原始数据的逆序度。插入排序是同样的,不管怎么优化,元素移动的次数也等于原始数据的逆序度。
从代码实现上来看,冒泡排序的数据交换要比插入排序的数据移动要复杂,冒泡排序需要 3 个赋值操作,而插入排序只需要 1 个(冒泡需要一个变量作来临时处理)。我们来看这段操作:

冒泡排序中数据的交换操作:
if (a[j] > a[j+1]) { // 交换
   int tmp = a[j];
   a[j] = a[j+1];
   a[j+1] = tmp;
   flag = true;
}
 
插入排序中数据的移动操作:
if (a[j] > value) {
  a[j+1] = a[j];  // 数据移动
} else {
  break;
}

虽然冒泡排序和插入排序在时间复杂度上是一样的,都是 O(n2),但是如果希望把性能优化做到极致,那肯定首选插入排序。

2.4、归并排序(Merge Sort)

归并排序的核心思想还是蛮简单的。如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。
数据结构与算法之 “排序”_第5张图片
归并排序使用的就是分治思想。分治,顾名思义,就是分而治之,将一个大问题分解成小的子问题来解决。小的子问题解决了,大问题也就解决了。

从我刚才的描述,你有没有感觉到,分治思想跟我们前面讲的递归思想很像。是的,分治算法一般都是用递归来实现的。分治是一种解决问题的处理思想,递归是一种编程技巧,这两者并不冲突。分治算法的思想我后面会有专门的一节来讲,现在不展开讨论,我们今天的重点还是排序算法。

前面我通过举例让你对归并有了一个感性的认识,又告诉你,归并排序用的是分治思想,可以用递归来实现。我们现在就来看看如何用递归代码来实现归并排序。

我在第 10 节讲的递归代码的编写技巧你还记得吗?写递归代码的技巧就是,分析得出递推公式,然后找到终止条件,最后将递推公式翻译成递归代码。所以,要想写出归并排序的代码,我们先写出归并排序的递推公式。

递推公式:
merge_sort(p…r) = merge(merge_sort(p…q), merge_sort(q+1…r))
 
终止条件:
p >= r 不用再继续分解

merge_sort(p…r) 表示,给下标从 p 到 r 之间的数组排序。我们将这个排序问题转化为了两个子问题,merge_sort(p…q) 和 merge_sort(q+1…r),其中下标 q 等于 p 和 r 的中间位置,也就是 (p+r)/2。当下标从 p 到 q 和从 q+1 到 r 这两个子数组都排好序之后,我们再将两个有序的子数组合并在一起,这样下标从 p 到 r 之间的数据就也排好序了。

有了递推公式,转化成代码就简单多了。为了阅读方便,我这里只给出伪代码,你可以翻译成你熟悉的编程语言。

// 归并排序算法, A 是数组,n 表示数组大小
merge_sort(A, n) {
  merge_sort_c(A, 0, n-1)
}
 
// 递归调用函数
merge_sort_c(A, p, r) {
  // 递归终止条件
  if p >= r  then return
 
  // 取 p 到 r 之间的中间位置 q
  q = (p+r) / 2
  // 分治递归
  merge_sort_c(A, p, q)
  merge_sort_c(A, q+1, r)
  // 将 A[p...q] 和 A[q+1...r] 合并为 A[p...r]
  merge(A[p...r], A[p...q], A[q+1...r])
}

merge(A[p…r], A[p…q], A[q+1…r]) 这个函数的作用就是,将已经有序的 A[p…q] 和 A[q+1…r] 合并成一个有序的数组,并且放入 A[p…r]。那这个过程具体该如何做呢?

如图所示,我们申请一个临时数组 tmp,大小与 A[p…r] 相同。我们用两个游标 i 和 j,分别指向 A[p…q] 和 A[q+1…r] 的第一个元素。比较这两个元素 A[i] 和 A[j],如果 A[i]<=A[j],我们就把 A[i] 放入到临时数组 tmp,并且 i 后移一位,否则将 A[j] 放入到数组 tmp,j 后移一位。

继续上述比较过程,直到其中一个子数组中的所有数据都放入临时数组中,再把另一个数组中的数据依次加入到临时数组的末尾,这个时候,临时数组中存储的就是两个子数组合并之后的结果了。最后再把临时数组 tmp 中的数据拷贝到原数组 A[p…r] 中。

数据结构与算法之 “排序”_第6张图片
把 merge() 函数写成伪代码,就是下面这样:

merge(A[p...r], A[p...q], A[q+1...r]) {
  var i := p,j := q+1,k := 0 // 初始化变量 i, j, k
  var tmp := new array[0...r-p] // 申请一个大小跟 A[p...r] 一样的临时数组
  while i<=q AND j<=r do {
    if A[i] <= A[j] {
      tmp[k++] = A[i++] // i++ 等于 i:=i+1
    } else {
      tmp[k++] = A[j++]
    }
  }
  
  // 判断哪个子数组中有剩余的数据
  var start := i,end := q
  if j<=r then start := j, end:=r
  
  // 将剩余的数据拷贝到临时数组 tmp
  while start <= end do {
    tmp[k++] = A[start++]
  }
  
  // 将 tmp 中的数组拷贝回 A[p...r]
  for i:=0 to r-p do {
    A[p+i] = tmp[i]
  }
}

利用哨兵简化编程的处理技巧吗?merge() 合并函数如果借助哨兵,代码就会简洁很多,这个问题留给你思考。

  • 归并排序是稳定的排序算法。
    归并排序稳不稳定关键要看 merge() 函数,也就是两个有序子数组合并成一个有序数组的那部分代码。

    在合并的过程中,如果 A[p…q] 和 A[q+1…r] 之间有值相同的元素,那我们可以像伪代码中那样,先把 A[p…q] 中的元素放入 tmp 数组。这样就保证了值相同的元素,在合并前后的先后顺序不变。所以,归并排序是一个稳定的排序算法。

  • 分析一下归并排序的时间复杂度。
    不仅递归求解的问题可以写成递推公式,递归代码的时间复杂度也可以写成递推公式。
    我们假设对 n 个元素进行归并排序需要的时间是 T(n),那分解成两个子数组排序的时间都是 T(n/2)。我们知道,merge() 函数合并两个有序子数组的时间复杂度是 O(n)。所以,套用前面的公式,归并排序的时间复杂度的计算公式就是:

    T(1) = C;   n=1 时,只需要常量级的执行时间,所以表示为 C。
    T(n) = 2*T(n/2) + n; n>1
    

    如何来求解 T(n) 呢?还不够直观?那我们再进一步分解一下计算过程。

    T(n) = 2*T(n/2) + n
         = 2*(2*T(n/4) + n/2) + n = 4*T(n/4) + 2*n
         = 4*(2*T(n/8) + n/4) + 2*n = 8*T(n/8) + 3*n
         = 8*(2*T(n/16) + n/8) + 3*n = 16*T(n/16) + 4*n
         ......
         = 2^k * T(n/2^k) + k * n
         ......
    

    通过这样一步一步分解推导,我们可以得到 T(n) = 2^k T(n/2^k)+kn。当 T(n/2^k)=T(1) 时,也就是 n/2^k=1,我们得到 k=log2n 。我们将 k 值代入上面的公式,得到 T(n)=Cn+nlog2n 。如果我们用大 O 标记法来表示的话,T(n) 就等于 O(nlogn)。所以归并排序的时间复杂度是 O(nlogn)。

    从我们的原理分析和伪代码可以看出,归并排序的执行效率与要排序的原始数组的有序程度无关,所以其时间复杂度是非常稳定的,不管是最好情况、最坏情况,还是平均情况,时间复杂度都是 O(nlogn)。

  • 空间复杂度
    归并排序的时间复杂度任何情况下都是 O(nlogn),看起来非常优秀。(待会儿你会发现,即便是快速排序,最坏情况下,时间复杂度也是 O(n^2)。)但是,归并排序并没有像快排那样,应用广泛,这是为什么呢?因为它有一个致命的“弱点”,那就是归并排序不是原地排序算法。

这是因为归并排序的合并函数,在合并两个有序数组为一个有序数组时,需要借助额外的存储空间。这一点你应该很容易理解。那我现在问你,归并排序的空间复杂度到底是多少呢?是 O(n),还是 O(nlogn),应该如何分析呢?

如果我们继续按照分析递归时间复杂度的方法,通过递推公式来求解,那整个归并过程需要的空间复杂度就是 O(nlogn)。不过,类似分析时间复杂度那样来分析空间复杂度,这个思路对吗?

实际上,递归代码的空间复杂度并不能像时间复杂度那样累加。刚刚我们忘记了最重要的一点,那就是,尽管每次合并操作都需要申请额外的内存空间,但在合并完成之后,临时开辟的内存空间就被释放掉了。在任意时刻,CPU 只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时内存空间最大也不会超过 n 个数据的大小,所以空间复杂度是 O(n)。

2.5、快速排序算法(Quicksort)

看快速排序算法(Quicksort),我们习惯性把它简称为“快排”。快排利用的也是分治思想。乍看起来,它有点像归并排序,但是思路其实完全不一样。我们待会会讲两者的区别。现在,我们先来看下快排的核心思想。

快排的思想是这样的:如果要排序数组中下标从 p 到 r 之间的一组数据,我们选择 p 到 r 之间的任意一个数据作为 pivot(分区点)。

我们遍历 p 到 r 之间的数据,将小于 pivot 的放到左边,将大于 pivot 的放到右边,将 pivot 放到中间。经过这一步骤之后,数组 p 到 r 之间的数据就被分成了三个部分,前面 p 到 q-1 之间都是小于 pivot 的,中间是 pivot,后面的 q+1 到 r 之间是大于 pivot 的。

数据结构与算法之 “排序”_第7张图片
根据分治、递归的处理思想,我们可以用递归排序下标从 p 到 q-1 之间的数据和下标从 q+1 到 r 之间的数据,直到区间缩小为 1,就说明所有的数据都有序了。

如果我们用递推公式来将上面的过程写出来的话,就是这样:

递推公式:
quick_sort(p…r) = quick_sort(p…q-1) + quick_sort(q+1, r)
 
终止条件:
p >= r

我将递推公式转化成递归代码。跟归并排序一样,我还是用伪代码来实现,你可以翻译成你熟悉的任何语言。

// 快速排序,A 是数组,n 表示数组的大小
quick_sort(A, n) {
  quick_sort_c(A, 0, n-1)
}
// 快速排序递归函数,p,r 为下标
quick_sort_c(A, p, r) {
  if p >= r then return
  
  q = partition(A, p, r) // 获取分区点
  quick_sort_c(A, p, q-1)
  quick_sort_c(A, q+1, r)
}

归并排序中有一个 merge() 合并函数,我们这里有一个 partition() 分区函数。partition() 分区函数实际上我们前面已经讲过了,就是随机选择一个元素作为 pivot(一般情况下,可以选择 p 到 r 区间的最后一个元素),然后对 A[p…r] 分区,函数返回 pivot 的下标。

如果我们不考虑空间消耗的话,partition() 分区函数可以写得非常简单。我们申请两个临时数组 X 和 Y,遍历 A[p…r],将小于 pivot 的元素都拷贝到临时数组 X,将大于 pivot 的元素都拷贝到临时数组 Y,最后再将数组 X 和数组 Y 中数据顺序拷贝到 A[p…r]。
数据结构与算法之 “排序”_第8张图片
但是,如果按照这种思路实现的话,partition() 函数就需要很多额外的内存空间,所以快排就不是原地排序算法了。如果我们希望快排是原地排序算法,那它的空间复杂度得是 O(1),那 partition() 分区函数就不能占用太多额外的内存空间,我们就需要在 A[p…r] 的原地完成分区操作。

原地分区函数的实现思路非常巧妙,我写成了伪代码,我们一起来看一下。

partition(A, p, r) {
  pivot := A[r]
  i := p
  for j := p to r-1 do {
    if A[j] < pivot {
      swap A[i] with A[j]
      i := i+1
    }
  }
  swap A[i] with A[r]
  return i
 

这里的处理有点类似选择排序。我们通过游标 i 把 A[p…r-1] 分成两部分。A[p…i-1] 的元素都是小于 pivot 的,我们暂且叫它“已处理区间”,A[i…r-1] 是“未处理区间”。我们每次都从未处理的区间 A[i…r-1] 中取一个元素 A[j],与 pivot 对比,如果小于 pivot,则将其加入到已处理区间的尾部,也就是 A[i] 的位置。

数组的插入操作还记得吗?在数组某个位置插入元素,需要搬移数据,非常耗时。当时我们也讲了一种处理技巧,就是交换,在 O(1) 的时间复杂度内完成插入操作。这里我们也借助这个思想,只需要将 A[i] 与 A[j] 交换,就可以在 O(1) 时间复杂度内将 A[j] 放到下标为 i 的位置。

文字不如图直观,所以我画了一张图来展示分区的整个过程。
数据结构与算法之 “排序”_第9张图片
因为分区的过程涉及交换操作,如果数组中有两个相同的元素,比如序列 6,8,7,6,3,5,9,4,在经过第一次分区操作之后,两个 6 的相对先后顺序就会改变。所以,快速排序并不是一个稳定的排序算法。

到此,快速排序的原理你应该也掌握了。现在,我再来看另外一个问题:快排和归并用的都是分治思想,递推公式和递归代码也非常相似,那它们的区别在哪里呢?
数据结构与算法之 “排序”_第10张图片
可以发现,归并排序的处理过程是由下到上的,先处理子问题,然后再合并。而快排正好相反,它的处理过程是由上到下的,先分区,然后再处理子问题。归并排序虽然是稳定的、时间复杂度为 O(nlogn) 的排序算法,但是它是非原地排序算法。我们前面讲过,归并之所以是非原地排序算法,主要原因是合并函数无法在原地执行。快速排序通过设计巧妙的原地分区函数,可以实现原地排序,解决了归并排序占用太多内存的问题。

快速排序的性能分析
现在,我们来分析一下快速排序的性能。我在讲解快排的实现原理的时候,已经分析了稳定性和空间复杂度。快排是一种原地、不稳定的排序算法。现在,我们集中精力来看快排的时间复杂度。

快排也是用递归来实现的。对于递归代码的时间复杂度,我前面总结的公式,这里也还是适用的。如果每次分区操作,都能正好把数组分成大小接近相等的两个小区间,那快排的时间复杂度递推求解公式跟归并是相同的。所以,快排的时间复杂度也是 O(nlogn)。

T(1) = C;   n=1 时,只需要常量级的执行时间,所以表示为 C。
T(n) = 2*T(n/2) + n; n>1

但是,公式成立的前提是每次分区操作,我们选择的 pivot 都很合适,正好能将大区间对等地一分为二。但实际上这种情况是很难实现的。

我举一个比较极端的例子。如果数组中的数据原来已经是有序的了,比如 1,3,5,6,8。如果我们每次选择最后一个元素作为 pivot,那每次分区得到的两个区间都是不均等的。我们需要进行大约 n 次分区操作,才能完成快排的整个过程。每次分区我们平均要扫描大约 n/2 个元素,这种情况下,快排的时间复杂度就从 O(nlogn) 退化成了 O(n2)。

我们刚刚讲了两个极端情况下的时间复杂度,一个是分区极其均衡,一个是分区极其不均衡。它们分别对应快排的最好情况时间复杂度和最坏情况时间复杂度。那快排的平均情况时间复杂度是多少呢?

我们假设每次分区操作都将区间分成大小为 9:1 的两个小区间。我们继续套用递归时间复杂度的递推公式,就会变成这样:

T(1) = C;   n=1 时,只需要常量级的执行时间,所以表示为 C。
 
T(n) = T(n/10) + T(9*n/10) + n; n>1

这个公式的递推求解的过程非常复杂,虽然可以求解,但我不推荐用这种方法。实际上,递归的时间复杂度的求解方法除了递推公式之外,还有递归树,在树那一节我再讲,这里暂时不说。我这里直接给你结论:T(n) 在大部分情况下的时间复杂度都可以做到 O(nlogn),只有在极端情况下,才会退化到 O(n2)。而且,我们也有很多方法将这个概率降到很低,如何来做?我们后面章节再讲。

归并排序和快速排序是两种稍微复杂的排序算法,它们用的都是分治的思想,代码都通过递归来实现,过程非常相似。理解归并排序的重点是理解递推公式和 merge() 合并函数。同理,理解快排的重点也是理解递推公式,还有 partition() 分区函数。

归并排序算法是一种在任何情况下时间复杂度都比较稳定的排序算法,这也使它存在致命的缺点,即归并排序不是原地排序算法,空间复杂度比较高,是 O(n)。正因为此,它也没有快排应用广泛。

快速排序算法虽然最坏情况下的时间复杂度是 O(n^2),但是平均情况下时间复杂度都是 O(nlogn)。不仅如此,快速排序算法时间复杂度退化到 O(n2) 的概率非常小,我们可以通过合理地选择 pivot 来避免这种情况。

  • 利用分区的思想,来解答开篇的问题:O(n) 时间复杂度内求无序数组中的第 K 大元素。比如,4, 2, 5, 12, 3 这样一组数据,第 3 大元素就是 4。

    我们选择数组区间 A[0…n-1] 的最后一个元素 A[n-1] 作为 pivot,对数组 A[0…n-1] 原地分区,这样数组就分成了三部分,A[0…p-1]、A[p]、A[p+1…n-1]。

    如果 p+1=K,那 A[p] 就是要求解的元素;如果 K>p+1, 说明第 K 大元素出现在 A[p+1…n-1] 区间,我们再按照上面的思路递归地在 A[p+1…n-1] 这个区间内查找。同理,如果 K 数据结构与算法之 “排序”_第11张图片
    我们再来看,为什么上述解决思路的时间复杂度是 O(n)?

    第一次分区查找,我们需要对大小为 n 的数组执行分区操作,需要遍历 n 个元素。第二次分区查找,我们只需要对大小为 n/2 的数组执行分区操作,需要遍历 n/2 个元素。依次类推,分区遍历元素的个数分别为、n/2、n/4、n/8、n/16.……直到区间缩小为 1。

    如果我们把每次分区遍历的元素个数加起来,就是:n+n/2+n/4+n/8+…+1。这是一个等比数列求和,最后的和等于 2n-1。所以,上述解决思路的时间复杂度就为 O(n)。

    你可能会说,我有个很笨的办法,每次取数组中的最小值,将其移动到数组的最前面,然后在剩下的数组中继续找最小值,以此类推,执行 K 次,找到的数据不就是第 K 大元素了吗?

    不过,时间复杂度就并不是 O(n) 了,而是 O(K * n)。你可能会说,时间复杂度前面的系数不是可以忽略吗?O(K * n) 不就等于 O(n) 吗?

    这个可不能这么简单地划等号。当 K 是比较小的常量时,比如 1、2,那最好时间复杂度确实是 O(n);但当 K 等于 n/2 或者 n 时,这种最坏情况下的时间复杂度就是 O(n2) 了。

三、线性排序

三种时间复杂度是 O(n) 的排序算法:桶排序、计数排序、基数排序。因为这些排序算法的时间复杂度是线性的,所以我们把这类排序算法叫作线性排序(Linear sort)。之所以能做到线性的时间复杂度,主要原因是,这三个算法是非基于比较的排序算法,都不涉及元素之间的比较操作。

这几种排序算法理解起来都不难,时间、空间复杂度分析起来也很简单,但是对要排序的数据要求很苛刻,所以我们今天学习重点的是掌握这些排序算法的适用场景。

3.1、桶排序(Bucket sort)

桶排序,顾名思义,会用到“桶”,核心思想是将要排序的数据分到几个有序的桶里,每个桶里的数据再单独进行排序。桶内排完序之后,再把每个桶里的数据按照顺序依次取出,组成的序列就是有序的了。
数据结构与算法之 “排序”_第12张图片
桶排序的时间复杂度为什么是 O(n) 呢?
如果要排序的数据有 n 个,我们把它们均匀地划分到 m 个桶内,每个桶里就有 k=n/m 个元素。每个桶内部使用快速排序,时间复杂度为 O(k * logk)。m 个桶排序的时间复杂度就是 O(m * k * logk),因为 k=n/m,所以整个桶排序的时间复杂度就是 O(n*log(n/m))。当桶的个数 m 接近数据个数 n 时,log(n/m) 就是一个非常小的常量,这个时候桶排序的时间复杂度接近 O(n)。

桶排序看起来很优秀,那它是不是可以替代我们之前讲的排序算法呢?

答案当然是否定的。为了让你轻松理解桶排序的核心思想,我刚才做了很多假设。实际上,桶排序对要排序数据的要求是非常苛刻的。

首先,要排序的数据需要很容易就能划分成 m 个桶,并且,桶与桶之间有着天然的大小顺序。这样每个桶内的数据都排序完之后,桶与桶之间的数据不需要再进行排序。

其次,数据在各个桶之间的分布是比较均匀的。如果数据经过桶的划分之后,有些桶里的数据非常多,有些非常少,很不平均,那桶内数据排序的时间复杂度就不是常量级了。在极端情况下,如果数据都被划分到一个桶里,那就退化为 O(nlogn) 的排序算法了。

桶排序比较适合用在外部排序中。所谓的外部排序就是数据存储在外部磁盘中,数据量比较大,内存有限,无法将数据全部加载到内存中。

比如说我们有 10GB 的订单数据,我们希望按订单金额(假设金额都是正整数)进行排序,但是我们的内存有限,只有几百 MB,没办法一次性把 10GB 的数据都加载到内存中。这个时候该怎么办呢?

现在我来讲一下,如何借助桶排序的处理思想来解决这个问题。

我们可以先扫描一遍文件,看订单金额所处的数据范围。假设经过扫描之后我们得到,订单金额最小是 1 元,最大是 10 万元。我们将所有订单根据金额划分到 100 个桶里,第一个桶我们存储金额在 1 元到 1000 元之内的订单,第二桶存储金额在 1001 元到 2000 元之内的订单,以此类推。每一个桶对应一个文件,并且按照金额范围的大小顺序编号命名(00,01,02…99)。

理想的情况下,如果订单金额在 1 到 10 万之间均匀分布,那订单会被均匀划分到 100 个文件中,每个小文件中存储大约 100MB 的订单数据,我们就可以将这 100 个小文件依次放到内存中,用快排来排序。等所有文件都排好序之后,我们只需要按照文件编号,从小到大依次读取每个小文件中的订单数据,并将其写入到一个文件中,那这个文件中存储的就是按照金额从小到大排序的订单数据了。

不过,你可能也发现了,订单按照金额在 1 元到 10 万元之间并不一定是均匀分布的 ,所以 10GB 订单数据是无法均匀地被划分到 100 个文件中的。有可能某个金额区间的数据特别多,划分之后对应的文件就会很大,没法一次性读入内存。这又该怎么办呢?

针对这些划分之后还是比较大的文件,我们可以继续划分,比如,订单金额在 1 元到 1000 元之间的比较多,我们就将这个区间继续划分为 10 个小区间,1 元到 100 元,101 元到 200 元,201 元到 300 元…901 元到 1000 元。如果划分之后,101 元到 200 元之间的订单还是太多,无法一次性读入内存,那就继续再划分,直到所有的文件都能读入内存为止。

3.2、???计数排序(Counting sort)

计数排序其实是桶排序的一种特殊情况。当要排序的 n 个数据,所处的范围并不大的时候,比如最大值是 k,我们就可以把数据划分成 k 个桶。每个桶内的数据值都是相同的,省掉了桶内排序的时间。

我们都经历过高考,高考查分数系统你还记得吗?我们查分数的时候,系统会显示我们的成绩以及所在省的排名。如果你所在的省有 50 万考生,如何通过成绩快速排序得出名次呢?

考生的满分是 900 分,最小是 0 分,这个数据的范围很小,所以我们可以分成 901 个桶,对应分数从 0 分到 900 分。根据考生的成绩,我们将这 50 万考生划分到这 901 个桶里。桶内的数据都是分数相同的考生,所以并不需要再进行排序。我们只需要依次扫描每个桶,将桶内的考生依次输出到一个数组中,就实现了 50 万考生的排序。因为只涉及扫描遍历操作,所以时间复杂度是 O(n)。

计数排序的算法思想就是这么简单,跟桶排序非常类似,只是桶的大小粒度不一样。不过,为什么这个排序算法叫“计数”排序呢?“计数”的含义来自哪里呢?

想弄明白这个问题,我们就要来看计数排序算法的实现方法。我还拿考生那个例子来解释。为了方便说明,我对数据规模做了简化。假设只有 8 个考生,分数在 0 到 5 分之间。这 8 个考生的成绩我们放在一个数组 A[8] 中,它们分别是:2,5,3,0,2,3,0,3。

考生的成绩从 0 到 5 分,我们使用大小为 6 的数组 C[6] 表示桶,其中下标对应分数。不过,C[6] 内存储的并不是考生,而是对应的考生个数。像我刚刚举的那个例子,我们只需要遍历一遍考生分数,就可以得到 C[6] 的值。
数据结构与算法之 “排序”_第13张图片
从图中可以看出,分数为 3 分的考生有 3 个,小于 3 分的考生有 4 个,所以,成绩为 3 分的考生在排序之后的有序数组 R[8] 中,会保存下标 4,5,6 的位置。
数据结构与算法之 “排序”_第14张图片
那我们如何快速计算出,每个分数的考生在有序数组中对应的存储位置呢?这个处理方法非常巧妙,很不容易想到。

思路是这样的:我们对 C[6] 数组顺序求和,C[6] 存储的数据就变成了下面这样子。C[k] 里存储小于等于分数 k 的考生个数。
数据结构与算法之 “排序”_第15张图片

3.2、???基数排序

你可能感兴趣的:(算法与数据结构)