- Python前沿技术:机器学习与人工智能
4.0啊
Python人工智能python机器学习
Python前沿技术:机器学习与人工智能一、引言随着科技的飞速发展,机器学习和人工智能(AI)已经成为了计算机科学领域的热门话题。Python作为一门易学易用且功能强大的编程语言,已经成为了这两个领域的首选语言之一。本文将深入探讨Python在机器学习和人工智能领域的应用,以及一些前沿技术和工具。二、Python机器学习基础2.1机器学习概述机器学习是人工智能(AI)的一个关键子集,它的核心在于让
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 机器学习基础(四)——决策树与随机森林
Bayesian小孙
机器学习基础决策树机器学习随机森林
决策树与随机森林文章目录决策树与随机森林一、知识概要(一)二、决策树使用的算法三、sklearn决策树API四、决策树的案例1.数据清洗2.特征工程3.调用决策树API五、集成学习方法-随机森林1.知识概要(二)2.集成学习API3.随机森林的案例importpandasaspdfromsklearn.feature_extractionimportDictVectorizerfromsklear
- 【机器学习基础】Anaconda与Pycharm使用
叫我东方小巴黎
机器学习基础人工智能
这里写目录标题指定py版本安装包指定py版本安装包condaenvlistactivatexxxcondalistpipinstallxxx
- Datawhale X 李宏毅苹果书 AI夏令营|机器学习基础之案例学习
Monyan
人工智能机器学习学习李宏毅深度学习
机器学习(MachineLearning,ML):机器具有学习的能力,即让机器具备找一个函数的能力函数不同,机器学习的类别不同:回归(regression):找到的函数的输出是一个数值或标量(scalar)。例如:机器学习预测某一个时间段内的PM2.5,机器要找到一个函数f,输入是跟PM2.5有关的的指数,输出是明天中午的PM2.5的值。分类(classification):让机器做选择题,先准备
- 应用数学与机器学习基础 - 线性代数篇
绎岚科技
机器学习深度学习机器学习线性代数
线性代数1.标量、向量、矩阵、张量学习线性代数,会涉及以下几个数学概念:标量(scalar):定义:一个标量就是一个单数的数,不同于线性代数中大多数概念会涉及到多个数。表示法:我们用斜体表示标量。标量通常赋予小写的变量名称。当我们介绍标量时,会明确它们是哪种类型的数。比如,在定义实数标量时,我们可能会说”让s∈Rs\in\mathbb{R}s∈R表示一条线的斜率“;在定义自然数标量时,我们可能会说
- 机器学习基础篇(八)——逻辑回归
柚子味的羊
数据分析机器学习机器学习算法逻辑回归
机器学习基础篇(八)——逻辑回归一、简介分类问题是机器学习中常见的一种问题,而逻辑回归则是非常适合二分类问题的一种算法。逻辑回归可以将数据集中的点划分成为两个类别。例如,我们可以将数据分成A类和B类。模型将给出特定数据点属于B类的概率,如果它低于0.5,那么就属于A类。如果高于0.5,那么该数据点属于B类。(大部分情况下阈值设为0.5,特定情况下也可以设置为其他值)举个栗子如图所示,学生考试是否成
- 深度学习如何入门?
nanshaws
yolov5深度学习
深度学习是机器学习的一个子领域,它基于人工神经网络的研究。入门深度学习可以分为以下几个步骤:基础知识准备:(1)掌握基础数学知识,特别是线性代数、概率论和统计学、微积分。(2)学习编程语言,Python是目前最流行的深度学习语言,因其简洁易学且有大量的库支持。(3)了解机器学习基础,包括监督学习和非监督学习的概念、模型评估与选择等。学习深度学习理论:(1)理解神经网络的基本组成,如神经元、激活函数
- 【机器学习基础】正则化
为梦而生~
机器学习机器学习人工智能
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习欢迎订阅!后面的内容会越来越有意思~⭐特别提醒:针对机器学习,特别开始专栏:机器学习python实战欢迎订阅!本专栏针对机器学习基础专栏的理论知识,利用python代码进行实际展示,真正做到从基础到实战!往期推荐:【机器学习基础】机器学习入门(1)【机器学习基础】机器学习入门(2)【机器学习基础】机器学习的基本术语【机器学习基础】机器学习的模型评
- 机器学习基础(一)理解机器学习的本质
昊昊该干饭了
人工智能python机器学习人工智能python
导读:在本文中,将深入探索机器学习的根本原理,包括基本概念、分类及如何通过构建预测模型来应用这些理论。目录机器学习机器学习概念相关概念机器学习根本:模型数据的语言:特征与标签训练与测试:模型评估机器学习的分类监督学习:有指导的学习过程非监督学习:自我探索的过程强化学习:通过试错学习构建与分析鸢尾花数据模型鸢尾花数据集简介加载数据集创建和训练模型进行预测与评估模型机器学习机器学习概念机器学习是人工智
- 【深度学习】讲透深度学习第3篇:TensorFlow张量操作(代码文档已分享)
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 四、机器学习基础概念介绍
ITS_Oaij
脑电机器学习机器学习人工智能
四、机器学习基础概念介绍1_机器学习基础概念机器学习分类1.1有监督学习1.2无监督学习2_有监督机器学习—常见评估方法数据集的划分2.1留出法2.2校验验证法(重点方法)简单交叉验证K折交叉验证(单独流出测试集)(常用方法/Sklearn的默认方法)k折交叉验证(不单独留出测试集)留一法交叉验证Subject-wise交叉验证2.3bootstrap自助法3_有监督机器学习—学习评价指标3.1准
- 【机器学习 & 深度学习】开发工具Anaconda的安装与使用
为梦而生~
机器学习python实战机器学习深度学习pythoncondapycharm人工智能
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习:相对完整的机器学习基础教学!机器学习python实战:用python带你感受真实的机器学习深度学习:现代人工智能的主流技术介绍往期推荐:【机器学习&深度学习】神经网络简述【机器学习&深度学习】卷积神经网络学习笔记【Python基础&机器学习】Python环境搭建(适合新手阅读的超详细教程)文章目录前言安装Anaconda关于Anaconda的介
- 跨模态行人重识别都需要学什么
ALGORITHM LOL
人工智能
跨模态行人重识别(Cross-ModalityPersonRe-identification,简称Cross-ModalityRe-ID)是计算机视觉领域的一项挑战性任务,旨在跨越不同模态之间(例如,可见光与红外线图像)识别同一行人。该任务涉及图像处理、特征提取、模态转换、深度学习等多个方面。1.基础知识计算机视觉与图像处理:理解图像基础(如像素、色彩空间)、图像变换、图像增强技术。机器学习基础:
- ChatGPT学习大纲
冷暖从容
ChatGPTchatgpt学习人工智能
引言 在2023年2月份左右开始使用ChatGPT时,就被它强大的理解能力和应答效果所折服,这期间一直在断断续续的学习和使用,也没形成一个完整的学习过程,最近刚好有空,就寻思着好好再学习总结一下,故写出了ChatGPT学习系列的文章,供与大家学习交流。第1周-ChatGPT基础知识ChatGPT简介了解ChatGPT的基本功能和应用场景。人工智能与机器学习基础学习AI和机器学习的基本概念,为理解
- 机器学习概述及流程
机智的冷露
机器学习人工智能机器学习python
概述一、目标1、掌握机器学习基础环境安装2、掌握常用的科学计算库对数据进行展示、分析二、人工智能三要素1、数据2、算法2、算力:CPU适合I/O密集型程序,GPU适合计算密集型和易于并行的程序。三、人工智能主要分支1、计算机视觉(CV)2、自然语言处理(NLP):文本挖掘/分类、机器翻译、语音识别3、机器人四、机器学习工作流程简介从数据中自动分析获得模型,再利用模型对未知数据进行预测。1、获取数据
- 机器学习基础——matplotlib.pyplot和seaborn的使用
小螳螂
importmatplotlib.pyplotaspltimportnumpyasnp第一步生成数据集x=np.linspace(-3,3,50)#平均采样,[-3,3]采样50个x.shape(50,)y1=2*x+1y1.shape(50,)y2=x**2y2array([9.00000000e+00,8.28029988e+00,7.59058726e+00,6.93086214e+00,6
- 【深度学习】讲透深度学习第3篇:TensorFlow张量操作(代码文档已分享)
程序员一诺
python笔记人工智能深度学习深度学习tensorflow人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 机器学习入门-----sklearn
辣椒酱.
python机器学习sklearn人工智能
机器学习基础了解概念机器学习是人工智能的一个实现途径深度学习是机器学习的一个方法发展而来定义:从数据中自动分析获得模型,并利用模型对特征数据【数据集:特征值+目标值构成】进行预测算法数据集的目标值是类别的话叫做分类问题;目标值是连续的数值的话叫做回归问题;统称监督学习;另一类是无监督学习,这一类的数据集没有目标值,典型:聚类;做什么可以进行传统预测、图像识别、自然语言处理传统预测店铺销量预测、量化
- 【机器学习】科学库使用手册第2篇:机器学习任务和工作流程(已分享,附代码)
程序员一诺
python笔记机器学习人工智能机器学习人工智能
本系列文章md笔记(已分享)主要讨论人工智能相关知识。主要内容包括,了解机器学习定义以及应用场景,掌握机器学习基础环境的安装和使用,掌握利用常用的科学计算库对数据进行展示、分析,学会使用jupyternotebook平台完成代码编写运行,应用Matplotlib的基本功能实现图形显示,应用Matplotlib实现多图显示,应用Matplotlib实现不同画图种类,学习Numpy运算速度上的优势,知
- 【深度学习】从0完整讲透深度学习第2篇:TensorFlow介绍和基本操作(代码文档已分享)
程序员一诺
python笔记深度学习人工智能深度学习tensorflow人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 2024-01-06-AI 大模型全栈工程师 - 机器学习基础
流雨声
人工智能机器学习
摘要2024-01-06阴杭州晴本节简介:a.数学模型&算法名词相关概念;b.学会数学建模相关知识;c.学会自我思考,提升认知,不要只会模仿;课程内容1.Fine-Tuning有什么作用?a.什么是模型训练(Training)b.什么是模型预训练(Pre-Training)c.微调(Fine-Tuning)d.轻量化微调(ParameterEfficientFine-Tuning,PEFT)2.什
- 机器学习基础、数学统计学概念、模型基础技术名词及相关代码个人举例
是lethe先生
机器学习人工智能
1.机器学习基础(1)机器学习概述机器学习是一种人工智能(AI)的分支,通过使用统计学和计算机科学的技术,使计算机能够从数据中学习并自动改进性能,而无需进行明确的编程。它涉及构建和训练机器学习模型,以便能够对未见过的数据进行预测或做出决策。机器学习的基本目标是通过从数据中发现模式和规律,自动提取和学习数据中的特征,并用这些特征构建预测模型或分类模型。(2)数学统计学概念1、概率论:概率论是研究随机
- 2024-01-06-AI 大模型全栈工程师 - 机器学习基础
流雨声
人工智能机器学习
摘要2024-01-06阴杭州晴本节简介:a.数学模型&算法名词相关概念;b.学会数学建模相关知识;c.学会自我思考,提升认知,不要只会模仿;课程内容1.Fine-Tuning有什么作用?a.什么是模型训练(Training)b.什么是模型预训练(Pre-Training)c.微调(Fine-Tuning)d.轻量化微调(ParameterEfficientFine-Tuning,PEFT)2.什
- 【机器学习 & 深度学习】卷积神经网络简述
为梦而生~
机器学习深度学习机器学习人工智能深度学习神经网络cnn计算机视觉自然语言处理
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习欢迎订阅!相对完整的机器学习基础教学!⭐特别提醒:针对机器学习,特别开始专栏:机器学习python实战欢迎订阅!本专栏针对机器学习基础专栏的理论知识,利用python代码进行实际展示,真正做到从基础到实战!往期推荐:【机器学习基础】一元线性回归(适合初学者的保姆级文章)【机器学习基础】多元线性回归(适合初学者的保姆级文章)【机器学习基础】决策树(
- 【Python基础 & 机器学习】Python环境搭建(适合新手阅读的超详细教程)
为梦而生~
机器学习python实战python机器学习开发语言人工智能数据挖掘pycharm
个人主页:为梦而生~关注我一起学习吧!重要专栏:机器学习:相对完整的机器学习基础教学!机器学习python实战:用python带你感受真实的机器学习深度学习:现代人工智能的主流技术介绍python网络爬虫从基础到实战:Python的主流应用领域之一,也可以与人工智能领域相结合的技术往期推荐:【机器学习&深度学习】神经网络简述【机器学习&深度学习】卷积神经网络简述【python爬虫开发实战&情感分析
- 深度学习知识点汇总-机器学习基础(5)
深度学习模型优化
2.5分类算法的评估指标有哪些?图1混淆矩阵上图中术语解释:TP(Truepositives)。表示被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数;FP(Falsepositives)。表示被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;FN(Falsenegatives)。表示被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;TN(Tru
- 机器学习基础2
qingxi_ran
机器学习人工智能
提示:MachneLearning机器学习吴恩达目录一、JupyterNotebooks(数据分析神器)二、回归模型(线性回归)三、分类模型(离散)四、术语一、JupyterNotebooks(数据分析神器)机器学习和数据科学从业者使用最广泛的工具在命令行输入pipinstalljupyter在命令行输入jupyternotework熟练使用jupyternotebook(三天)二、回归模型(线性
- 矩阵求逆(JAVA)利用伴随矩阵
qiuwanchi
利用伴随矩阵求逆矩阵
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(利用伴随矩阵)
* @author 邱万迟
- 单例(Singleton)模式
aoyouzi
单例模式Singleton
3.1 概述 如果要保证系统里一个类最多只能存在一个实例时,我们就需要单例模式。这种情况在我们应用中经常碰到,例如缓存池,数据库连接池,线程池,一些应用服务实例等。在多线程环境中,为了保证实例的唯一性其实并不简单,这章将和读者一起探讨如何实现单例模式。 3.2
- [开源与自主研发]就算可以轻易获得外部技术支持,自己也必须研发
comsci
开源
现在国内有大量的信息技术产品,都是通过盗版,免费下载,开源,附送等方式从国外的开发者那里获得的。。。。。。
虽然这种情况带来了国内信息产业的短暂繁荣,也促进了电子商务和互联网产业的快速发展,但是实际上,我们应该清醒的看到,这些产业的核心力量是被国外的
- 页面有两个frame,怎样点击一个的链接改变另一个的内容
Array_06
UIXHTML
<a src="地址" targets="这里写你要操作的Frame的名字" />搜索
然后你点击连接以后你的新页面就会显示在你设置的Frame名字的框那里
targerts="",就是你要填写目标的显示页面位置
=====================
例如:
<frame src=&
- Struts2实现单个/多个文件上传和下载
oloz
文件上传struts
struts2单文件上传:
步骤01:jsp页面
<!--在进行文件上传时,表单提交方式一定要是post的方式,因为文件上传时二进制文件可能会很大,还有就是enctype属性,这个属性一定要写成multipart/form-data,不然就会以二进制文本上传到服务器端-->
<form action="fileUplo
- 推荐10个在线logo设计网站
362217990
logo
在线设计Logo网站。
1、http://flickr.nosv.org(这个太简单)
2、http://www.logomaker.com/?source=1.5770.1
3、http://www.simwebsol.com/ImageTool
4、http://www.logogenerator.com/logo.php?nal=1&tpl_catlist[]=2
5、ht
- jsp上传文件
香水浓
jspfileupload
1. jsp上传
Notice:
1. form表单 method 属性必须设置为 POST 方法 ,不能使用 GET 方法
2. form表单 enctype 属性需要设置为 multipart/form-data
3. form表单 action 属性需要设置为提交到后台处理文件上传的jsp文件地址或者servlet地址。例如 uploadFile.jsp 程序文件用来处理上传的文
- 我的架构经验系列文章 - 前端架构
agevs
JavaScriptWeb框架UIjQuer
框架层面:近几年前端发展很快,前端之所以叫前端因为前端是已经可以独立成为一种职业了,js也不再是十年前的玩具了,以前富客户端RIA的应用可能会用flash/flex或是silverlight,现在可以使用js来完成大部分的功能,因此js作为一门前端的支撑语言也不仅仅是进行的简单的编码,越来越多框架性的东西出现了。越来越多的开发模式转变为后端只是吐json的数据源,而前端做所有UI的事情。MVCMV
- android ksoap2 中把XML(DataSet) 当做参数传递
aijuans
android
我的android app中需要发送webservice ,于是我使用了 ksop2 进行发送,在测试过程中不是很顺利,不能正常工作.我的web service 请求格式如下
[html]
view plain
copy
<Envelope xmlns="http://schemas.
- 使用Spring进行统一日志管理 + 统一异常管理
baalwolf
spring
统一日志和异常管理配置好后,SSH项目中,代码以往散落的log.info() 和 try..catch..finally 再也不见踪影!
统一日志异常实现类:
[java]
view plain
copy
package com.pilelot.web.util;
impor
- Android SDK 国内镜像
BigBird2012
android sdk
一、镜像地址:
1、东软信息学院的 Android SDK 镜像,比配置代理下载快多了。
配置地址, http://mirrors.neusoft.edu.cn/configurations.we#android
2、北京化工大学的:
IPV4:ubuntu.buct.edu.cn
IPV4:ubuntu.buct.cn
IPV6:ubuntu.buct6.edu.cn
- HTML无害化和Sanitize模块
bijian1013
JavaScriptAngularJSLinkySanitize
一.ng-bind-html、ng-bind-html-unsafe
AngularJS非常注重安全方面的问题,它会尽一切可能把大多数攻击手段最小化。其中一个攻击手段是向你的web页面里注入不安全的HTML,然后利用它触发跨站攻击或者注入攻击。
考虑这样一个例子,假设我们有一个变量存
- [Maven学习笔记二]Maven命令
bit1129
maven
mvn compile
compile编译命令将src/main/java和src/main/resources中的代码和配置文件编译到target/classes中,不会对src/test/java中的测试类进行编译
MVN编译使用
maven-resources-plugin:2.6:resources
maven-compiler-plugin:2.5.1:compile
&nbs
- 【Java命令二】jhat
bit1129
Java命令
jhat用于分析使用jmap dump的文件,,可以将堆中的对象以html的形式显示出来,包括对象的数量,大小等等,并支持对象查询语言。 jhat默认开启监听端口7000的HTTP服务,jhat是Java Heap Analysis Tool的缩写
1. 用法:
[hadoop@hadoop bin]$ jhat -help
Usage: jhat [-stack <bool&g
- JBoss 5.1.0 GA:Error installing to Instantiated: name=AttachmentStore state=Desc
ronin47
进到类似目录 server/default/conf/bootstrap,打开文件 profile.xml找到: Xml代码<bean
name="AttachmentStore"
class="org.jboss.system.server.profileservice.repository.AbstractAtta
- 写给初学者的6条网页设计安全配色指南
brotherlamp
UIui自学ui视频ui教程ui资料
网页设计中最基本的原则之一是,不管你花多长时间创造一个华丽的设计,其最终的角色都是这场秀中真正的明星——内容的衬托
我仍然清楚地记得我最早的一次美术课,那时我还是一个小小的、对凡事都充满渴望的孩子,我摆放出一大堆漂亮的彩色颜料。我仍然记得当我第一次看到原色与另一种颜色混合变成第二种颜色时的那种兴奋,并且我想,既然两种颜色能创造出一种全新的美丽色彩,那所有颜色
- 有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。写一个函数实现。复杂度是什么。
bylijinnan
java算法面试
import java.util.Random;
import java.util.Set;
import java.util.TreeSet;
/**
* http://weibo.com/1915548291/z7HtOF4sx
* #面试题#有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。
* 写一个函数实现。复杂度是什么
- struts2获得request、session、application方式
chiangfai
application
1、与Servlet API解耦的访问方式。
a.Struts2对HttpServletRequest、HttpSession、ServletContext进行了封装,构造了三个Map对象来替代这三种对象要获取这三个Map对象,使用ActionContext类。
----->
package pro.action;
import java.util.Map;
imp
- 改变python的默认语言设置
chenchao051
python
import sys
sys.getdefaultencoding()
可以测试出默认语言,要改变的话,需要在python lib的site-packages文件夹下新建:
sitecustomize.py, 这个文件比较特殊,会在python启动时来加载,所以就可以在里面写上:
import sys
sys.setdefaultencoding('utf-8')
&n
- mysql导入数据load data infile用法
daizj
mysql导入数据
我们常常导入数据!mysql有一个高效导入方法,那就是load data infile 下面来看案例说明
基本语法:
load data [low_priority] [local] infile 'file_name txt' [replace | ignore]
into table tbl_name
[fields
[terminated by't']
[OPTI
- phpexcel导入excel表到数据库简单入门示例
dcj3sjt126com
PHPExcel
跟导出相对应的,同一个数据表,也是将phpexcel类放在class目录下,将Excel表格中的内容读取出来放到数据库中
<?php
error_reporting(E_ALL);
set_time_limit(0);
?>
<html>
<head>
<meta http-equiv="Content-Type"
- 22岁到72岁的男人对女人的要求
dcj3sjt126com
22岁男人对女人的要求是:一,美丽,二,性感,三,有份具品味的职业,四,极有耐性,善解人意,五,该聪明的时候聪明,六,作小鸟依人状时尽量自然,七,怎样穿都好看,八,懂得适当地撒娇,九,虽作惊喜反应,但看起来自然,十,上了床就是个无条件荡妇。 32岁的男人对女人的要求,略作修定,是:一,入得厨房,进得睡房,二,不必服侍皇太后,三,不介意浪漫蜡烛配盒饭,四,听多过说,五,不再傻笑,六,懂得独
- Spring和HIbernate对DDM设计的支持
e200702084
DAO设计模式springHibernate领域模型
A:数据访问对象
DAO和资源库在领域驱动设计中都很重要。DAO是关系型数据库和应用之间的契约。它封装了Web应用中的数据库CRUD操作细节。另一方面,资源库是一个独立的抽象,它与DAO进行交互,并提供到领域模型的“业务接口”。
资源库使用领域的通用语言,处理所有必要的DAO,并使用领域理解的语言提供对领域模型的数据访问服务。
- NoSql 数据库的特性比较
geeksun
NoSQL
Redis 是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。目前由VMware主持开发工作。
1. 数据模型
作为Key-value型数据库,Redis也提供了键(Key)和值(Value)的映射关系。除了常规的数值或字符串,Redis的键值还可以是以下形式之一:
Lists (列表)
Sets
- 使用 Nginx Upload Module 实现上传文件功能
hongtoushizi
nginx
转载自: http://www.tuicool.com/wx/aUrAzm
普通网站在实现文件上传功能的时候,一般是使用Python,Java等后端程序实现,比较麻烦。Nginx有一个Upload模块,可以非常简单的实现文件上传功能。此模块的原理是先把用户上传的文件保存到临时文件,然后在交由后台页面处理,并且把文件的原名,上传后的名称,文件类型,文件大小set到页面。下
- spring-boot-web-ui及thymeleaf基本使用
jishiweili
springthymeleaf
视图控制层代码demo如下:
@Controller
@RequestMapping("/")
public class MessageController {
private final MessageRepository messageRepository;
@Autowired
public MessageController(Mes
- 数据源架构模式之活动记录
home198979
PHP架构活动记录数据映射
hello!架构
一、概念
活动记录(Active Record):一个对象,它包装数据库表或视图中某一行,封装数据库访问,并在这些数据上增加了领域逻辑。
对象既有数据又有行为。活动记录使用直截了当的方法,把数据访问逻辑置于领域对象中。
二、实现简单活动记录
活动记录在php许多框架中都有应用,如cakephp。
<?php
/**
* 行数据入口类
*
- Linux Shell脚本之自动修改IP
pda158
linuxcentosDebian脚本
作为一名
Linux SA,日常运维中很多地方都会用到脚本,而服务器的ip一般采用静态ip或者MAC绑定,当然后者比较操作起来相对繁琐,而前者我们可以设置主机名、ip信息、网关等配置。修改成特定的主机名在维护和管理方面也比较方便。如下脚本用途为:修改ip和主机名等相关信息,可以根据实际需求修改,举一反三!
#!/bin/sh
#auto Change ip netmask ga
- 开发环境搭建
独浮云
eclipsejdktomcat
最近在开发过程中,经常出现MyEclipse内存溢出等错误,需要重启的情况,好麻烦。对于一般的JAVA+TOMCAT项目开发,其实没有必要使用重量级的MyEclipse,使用eclipse就足够了。尤其是开发机器硬件配置一般的人。
&n
- 操作日期和时间的工具类
vipbooks
工具类
大家好啊,好久没有来这里发文章了,今天来逛逛,分享一篇刚写不久的操作日期和时间的工具类,希望对大家有所帮助。
/*
* @(#)DataFormatUtils.java 2010-10-10
*
* Copyright 2010 BianJing,All rights reserved.
*/
package test;
impor