pandas 中的DataFrame.where()使用
pandas.DataFrame.where
-
DataFrame.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)
inplace : boolean, default False
Whether to perform the operation in place on the data
axis : alignment axis if needed, default None
level : alignment level if needed, default None
try_cast : boolean, default False
try to cast the result back to the input type (if possible),
raise_on_error : boolean, default True
Whether to raise on invalid data types (e.g. trying to where on strings)
also see DataFrame.mask()
Notes
The where method is an application of the if-then idiom. For each element in the calling DataFrame, if cond
is True
the element is used; otherwise the corresponding element from the DataFrame other
is used.
The signature for DataFrame.where()
differs from numpy.where()
. Roughly df1.where(m, df2)
is equivalent to np.where(m, df1, df2)
.
For further details and examples see the where
documentation in indexing.
Examples
>>> s = pd.Series(range(5)) >>> s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) >>> m = df % 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 >>> df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True
参考文档numpy或pandas文档
posted on 2018-05-28 11:35 多一点 阅读(...) 评论(...) 编辑 收藏