pandas 中的DataFrame.where()使用

pandas 中的DataFrame.where()使用

pandas.DataFrame.where

DataFrame.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)

inplace : boolean, default False

Whether to perform the operation in place on the data

axis : alignment axis if needed, default None

level : alignment level if needed, default None

try_cast : boolean, default False

try to cast the result back to the input type (if possible),

raise_on_error : boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

also see DataFrame.mask()

Notes

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is True the element is used; otherwise the corresponding element from the DataFrame other is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the where documentation in indexing.

Examples

>>> s = pd.Series(range(5)) >>> s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0 
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) >>> m = df % 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 >>> df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True

参考文档numpy或pandas文档

import numpy as np arr = np.random.randn(4,4)
print(arr)
print(np.where(arr>0,2,-2))
print(np.where(arr>0,2,arr))
pandas 中的DataFrame.where()使用_第1张图片

 


 

 

posted on 2018-05-28 11:35 多一点 阅读(...) 评论(...) 编辑 收藏

你可能感兴趣的:(pandas)