- 深度学习与目标检测系列(三) 本文约(4万字) | 全面解读复现AlexNet | Pytorch |
小酒馆燃着灯
深度学习目标检测pytorchAlexNet人工智能
文章目录解读Abstract-摘要翻译精读主要内容1.Introduction—前言翻译精读主要内容:本文主要贡献:2.TheDataset-数据集翻译精读主要内容:ImageNet简介:图像处理方法:3.TheArchitecture—网络结构3.1ReLUNonlinearity—非线性激活函数ReLU翻译精读传统方法及不足本文改进方法本文的改进结果3.2TrainingonMultipleG
- 关于神经网络中的激活函数
文弱_书生
乱七八糟神经网络人工智能深度学习
激活函数(ActivationFunction)详解理解首先煮波解释一下这四个字,“函数”相信大家都不陌生,能点进来看这篇文章说明你一定经历至少长达十年的数学的摧残,关于这个概念煮波就不巴巴了,煮波主要说一下“激活”,大家可能或多或少的看过类似于古装,玄幻,修仙等类型的小说或者电视剧。剧中的主角往往是天赋异禀或则什么神啊仙啊的转世,但是这一世他却被当成了普通人,指导某一时刻才会迸发出全部的能量(主
- 基于python的ansys_基于python的感知机
weixin_39687990
基于python的ansys
一、1、感知机可以描述为一个线性方程,用python的伪代码可表示为:sum(weight_i*x_i)+bias->activation#activation表示激活函数,x_i和weight_i是分别为与当前神经元连接的其它神经元的输入以及连接的权重。bias表示当前神经元的输出阀值(或称偏置)。箭头(->)左边的数据,就是激活函数的输入2、定义激活函数f:deffunc_activator(
- 部分激活函数可视化
Keyshal_Wei
python机器学习开发语言
importnumpyasnpimportmatplotlib.pyplotasplt#定义激活函数defsigmoid(x):return1/(1+np.exp(-x))deftanh(x):returnnp.tanh(x)defrelu(x):returnnp.maximum(0,x)defleaky_relu(x,alpha=0.01):returnnp.where(x>0,x,alpha*
- 【深度学习基础】第二十四课:softmax函数的导数
x-jeff
深度学习基础深度学习人工智能
【深度学习基础】系列博客为学习Coursera上吴恩达深度学习课程所做的课程笔记。1.softmax函数softmax函数详解。2.softmax函数的导数假设神经网络输出层的激活函数为softmax函数,用以解决多分类问题。在反向传播时,就需要计算softmax函数的导数,这也就是本文着重介绍的内容。我们只需关注输出层即可,其余层和之前介绍的二分类模型一样,不再赘述。我们先考虑只有一个样本的情况
- java实现卷积神经网络CNN(附带源码)
Katie。
Java实战项目java
Java实现卷积神经网络(CNN)项目详解目录项目概述1.1项目背景与意义1.2什么是卷积神经网络(CNN)1.3卷积神经网络的应用场景相关知识与理论基础2.1神经网络与深度学习概述2.2卷积操作与卷积层原理2.3激活函数与池化层2.4全连接层与损失函数2.5前向传播、反向传播与梯度下降项目需求与分析3.1项目目标3.2功能需求分析3.3性能与扩展性要求3.4异常处理与鲁棒性考虑系统设计与实现思路
- 【杨乐昆何凯明AI论文】没有归一化的Transformer模型
东临碣石82
人工智能transformer深度学习
摘要:归一化层在现代神经网络中无处不在,长期以来一直被视为不可或缺的组成部分。本研究表明,通过使用一种极其简单的技术,没有归一化的Transformer模型可以达到相同或更好的性能。我们引入了动态Tanh(DyT),这是一种逐元素操作,表示为DyT(x)=tanh(alphax),作为Transformer中归一化层的即插即用替代品。DyT的灵感来源于这样一个观察:Transformer中的层归一
- 神经网络完成训练的详细过程
每天五分钟玩转人工智能
神经网络人工智能深度学习pytorch机器学习优化算法包括梯度下降法
神经网络完成训练的详细过程一、神经网络的基本概念神经网络是一种模拟人脑神经系统的计算模型,由大量的神经元(节点)和它们之间的连接(权重)组成。神经元接收输入信号,通过加权求和和激活函数的处理,产生输出信号。这些输出信号又可以作为其他神经元的输入,从而形成一个复杂的网络结构。神经网络的训练过程就是调整这些权重和偏置(每个神经元除了有权重外,还有一个偏置项,用于调整输出的阈值),使得网络的输出能够尽可
- 从Swish到SwiGLU:激活函数的进化与革命,qwen2.5应用的激活函数
KangkangLoveNLP
qwen2.5人工智能算法神经网络机器学习深度学习cnn自然语言处理
swiGLU和RMSNorm1.什么是swiGLUSwiGLU(Swish-GatedLinearUnit)是一种结合了Swish激活函数和GLU(GatedLinearUnit)门控机制的激活函数,广泛应用于现代大型语言模型中1.什么是Swish激活函数1.1Swish激活函数Swish激活函数是一种平滑的、非单调的激活函数,由GoogleBrain团队在2017年提出。它结合了ReLU的非线性
- Chebykan wx 文章阅读
やっはろ
深度学习
文献筛选[1]神经网络:全面基础[2]通过sigmoid函数的超层叠近似[3]多层前馈网络是通用近似器[5]注意力是你所需要的[6]深度残差学习用于图像识别[7]视觉化神经网络的损失景观[8]牙齿模具点云补全通过数据增强和混合RL-GAN[9]强化学习:一项调查[10]使用PySR和SymbolicRegression.jl的科学可解释机器学习[11]Z.Liu,Y.Wang,S.Vaidya,F
- Simple Baselines for Image Restoration
Adagrad
paper深度学习
Abstract.尽管近年来在图像恢复领域取得了长足的进步,但SOTA方法的系统复杂性也在不断增加,这可能会阻碍对方法的分析和比较。在本文中,我们提出了一个简单的基线,超过了SOTA方法,是计算效率。为了进一步简化基线,我们揭示了非线性激活函数,如Sigmoid、ReLU、GELU、Softmax等是不必要的:它们可以用乘法替换或删除。因此,我们从基线推导出一个非线性激活自由网络,即NAFNet。
- 动手学深度学习V2.0(Pytorch)——10.感知机(激活函数)
吨吨不打野
动手学深度学习pytorchpytorch深度学习机器学习
文章目录1.感知机2.多层感知机2.1异或问题2.2单隐藏层2.3激活函数2.3.1logistics函数/sigmoid激活函数2.3.2tanh函数2.3.3sigmoid函数和tanh函数的异同/优缺点2.3.4relu2.4多类分类2.5多隐藏层3Q&A3.1神经网络中一层的定义是什么3.2感知机无法解决XOR问题,多层感知机虽然可以解决,但是还是被SVM替代是为什么?3.3不同任务的激活
- 卷积神经网络(笔记01)
天行者@
cnn人工智能深度学习
视觉处理三大任务:分类、目标检测、图像分割CNN网络主要有三部分构成:卷积层(ConvolutionalLayer)、池化层(PoolingLayer)和激活函数一、解释卷积层中的偏置项是什么,并讨论在神经网络中引入偏置项的好处。在卷积神经网络(CNN)的卷积层里,卷积操作本质上是输入数据与卷积核(滤波器)进行逐元素相乘再求和的过程。偏置项(Bias)是一个额外的可学习参数,对于每个卷积核而言,都
- 【NLP 39、激活函数 ⑤ Swish激活函数】
L_cl
NLP自然语言处理人工智能
我的孤独原本是座荒岛,直到你称成潮汐,原来爱是让个体失序的永恒运动——25.2.25Swish激活函数是一种近年来在深度学习中广泛应用的激活函数,由GoogleBrain团队在2017年提出。其核心设计结合了Sigmoid门控机制和线性输入的乘积,通过引入平滑性和非单调性来提升模型性能。一、数学定义与变体1.基础形式Swish的标准表达式为:Swish(x)=x⋅σ(βx)其中:σ(x)是Sigm
- Python第十六课:深度学习入门 | 神经网络解密
程之编
Python全栈通关秘籍python神经网络青少年编程
本节目标理解生物神经元与人工神经网络的映射关系掌握激活函数与损失函数的核心作用使用Keras构建手写数字识别模型可视化神经网络的训练过程掌握防止过拟合的基础策略一、神经网络基础(大脑的数字化仿生)1.神经元对比生物神经元人工神经元树突接收信号输入层接收特征数据细胞体整合信号加权求和(∑(权重×输入)+偏置)轴突传递电信号激活函数处理输出2.核心组件解析激活函数:神经元的"开关"(如ReLU:max
- 基于PyTorch的深度学习——机器学习3
Wis4e
深度学习机器学习pytorch
激活函数在神经网络中作用有很多,主要作用是给神经网络提供非线性建模能力。如果没有激活函数,那么再多层的神经网络也只能处理线性可分问题。在搭建神经网络时,如何选择激活函数?如果搭建的神经网络层数不多,选择sigmoid、tanh、relu、softmax都可以;而如果搭建的网络层次较多,那就需要小心,选择不当就可导致梯度消失问题。此时一般不宜选择sigmoid、tanh激活函数,因它们的导数都小于1
- 神经网络中梯度计算求和公式求导问题
serve the people
日常琐问神经网络机器学习算法
以下是公式一推导出公式二的过程。表达式一∂E∂wjk=−2(tk−ok)⋅sigmoid(∑jwjk⋅oj)⋅(1−sigmoid(∑jwjk⋅oj))⋅∂∂wjk(∑jwjk⋅oj)\frac{\partialE}{\partialw_{jk}}=-2(t_k-o_k)\cdot\text{sigmoid}\left(\sum_jw_{jk}\cdoto_j\right)\cdot(1-\tex
- 深度学习在SSVEP信号分类中的应用分析
自由的晚风
深度学习分类人工智能
目录前言1.SSVEP信号分类的处理流程2.模型输入和数据预处理3.模型结构设计3.1卷积神经网络(CNN)3.2长短期记忆网络(LSTM)4.训练方法与激活函数5.性能评估与挑战6.未来方向前言随着脑机接口(BCI)技术的发展,SSVEP(稳态视觉诱发电位)因其高信息传输速率和短训练时间而成为最受欢迎的BCI范式之一。近年来,深度学习方法在SSVEP信号分类中取得了显著的成果。本文通过对31个深
- 【ShuQiHere】 解密诺奖得主:约翰·霍普菲尔德与人工神经网络的革命
ShuQiHere
机器学习深度学习
【ShuQiHere】目录引言:跨界的传奇科学家诺贝尔奖的背后:人工神经网络的崛起约翰·霍普菲尔德的开创性工作神经网络的寒冬与突破霍普菲尔德网络的工作原理代码示例:实现霍普菲尔德网络激活函数的出现与神经网络的复兴杰弗里·辛顿的扩展与影响人工神经网络的现实应用总结与未来展望互动时间:你的看法额外资源与延伸阅读引言:跨界的传奇科学家2024年,诺贝尔物理学奖首次颁给了计算机科学家!约翰·霍普菲尔德(
- 神经网络|(十四)|霍普菲尔德神经网络-Hebbian训练
西猫雷婶
人工智能python学习笔记神经网络人工智能深度学习
【1】引言前序学习进程中,除了对基本的神经网络知识进行了学习,还掌握了SOM神经网络原理,文章链接包括且不限于:神经网络|(十一)|神经元和神经网络-CSDN博客神经网络|(十二)|常见激活函数-CSDN博客神经网络|(十三)|SOM神经网络-CSDN博客在此基础上,本篇文章学习一个新的神经网络:霍普菲尔德神经网络。【2】霍普菲尔德神经网络原理霍普菲尔德神经网络和SOM神经网络一样不走寻常路,SO
- 深度学习笔记——神经网络
肆——
深度学习深度学习笔记神经网络人工智能python
本文为在拓尔思智能举办的训练营中学习内容的总结,部分内容摘自百度百科个人在这里推荐一个好用的软件,Trae,主要是免费。人工神经元是人工神经网络的基本单元。模拟生物神经元,人工神经元有1个或者多个输入(模拟多个树突或者多个神经元向该神经元传递神经冲动);对输入进行加权求和(模拟细胞体将神经信号进行积累和树突强度不同);对输入之和使用激活函数计算活性值(模拟细胞体产生兴奋或者抑制);输出活性值并传递
- 深度学习的数学之魂:传统机器学习的超越者
洋葱蚯蚓
机器学习深度学习机器学习人工智能经验分享个人开发数据挖掘
深度学习的数学之魂:传统机器学习的超越者前言第一部分:神经元的数学语言1.1神经元模型的启示1.2激活函数的非线性魔法第二部分:网络结构的层次之美2.1网络结构的多样性2.2层次结构的力量第三部分:图像的力量与直观理解3.1图表与动图的辅助作用3.2直观理解的桥梁第四部分:深度与专业的对话4.1深度学习与传统机器学习的比较4.2专业性强的技术分析第五部分:数学原理的深度剖析5.1神经网络的数学表达
- HHO优化SVM混合核(高斯核和Sigmoid核)回归预测
WSY算法爱好者
支持向量机回归算法
训练集-平均绝对误差(MAE):0.54544训练集-平均绝对误差百分比(MAPE):0.0011634训练集-均方根误差(RMSE):0.66571训练集-决定系数(R):0.95297测试集-平均绝对误差(MAE):0.31575测试集-平均绝对误差百分比(MAPE):0.00067398测试集-均方根误差(RMSE):0.39158测试集-决定系数(R):0.97566------HHO优化
- Pytorch实现之LSRGAN,轻量化SRGAN超分辨率SAR
这张生成的图像能检测吗
优质GAN模型训练自己的数据集超分辨率重建人工智能图像处理计算机视觉深度学习pytorch机器学习
简介简介:在SRGAN的基础上设计了一个轻量化的SRGAN模型结构,通过DSConv+CA与残差结构的设计来减少参数量,同时利用SeLU激活函数构造。与多类SRGAN改进不同的是,很少使用BN层。论文题目:LightweightSuper-ResolutionGenerativeAdversarialNetworkforSARImages(SAR图像的轻量级超分辨率生成对抗网络)期刊:Remote
- DiNN学习笔记1-理论部分
瓜皮37
同态加密密码学信息安全神经网络
DiNN学习笔记1-理论部分背景知识机器学习即服务MLaaS中的全同态加密神经网络Fhe-DiNN中的默认设定Fhe-DiNN方案神经元中的计算离散神经网络DiNN评估步骤自举的引入激活函数的同态评估对TFHE的改进明文的打包密钥转换的前置动态变化的消息空间优化盲旋步骤DiNN方案的整体流程参考资料背景知识机器学习即服务机器学习即服务(MachineLearningasaService,MLaaS
- 数学建模:MATLAB极限学习机解决回归问题
DesolateGIS
数学建模数学建模matlab开发语言
一、简述极限学习机是一种用于训练单隐层前馈神经网络的算法,由输入层、隐藏层、输出层组成。基本原理:输入层接受传入的样本数据。在训练过程中随机生成从输入层到隐藏层的所有连接权重以及每个隐藏层神经元的偏置值,这些参数在整个训练过程中不会被修改。前向传播:输入数据通过已设定的权重和偏置传递给隐藏层,经过激活函数处理后产生隐藏层的输出。在得到隐藏层输出后,需找到从隐藏层到输出层的最佳权重。隐藏层到输出层的
- pytorch与深度学习随记——AlexNet
黑色的山岗在沉睡
深度学习随记深度学习pytorch人工智能
AlexNet和LeNet的设计理念非常相似,但也存在显著差异:基本结构对比网络深度:AlexNet比LeNet-5要深得多,AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。激活函数:AlexNet使用ReLU而不是sigmoid作为其激活函数,这有助于缓解梯度消失问题并加速训练过程。AlexNet架构的创新点局部响应归一化(LRN):AlexNet引入LRN层,可以创建
- 建筑兔零基础人工智能自学记录34|深度学习与神经网络2
阿克兔
人工智能toto学习人工智能深度学习神经网络
1、人工神经网络ANN从生物课上学到的有关神经元、突触的生物神经网络,被模仿出了简化的人工神经网络(ANN,artificialneuralnetwork)。ANN结构为:输入层、隐藏层、输出层人工神经元:基于生物神经元的数学模型ANN过程:输入---加权求和---激活函数激活函数:类似生物神经元的阈值,达到阈值输出信号(‘神经网络的万能逼近定理’---两层以上神经网络可以逼近任意函数)2、深度学
- 全过程带你从入门到精通《动手学PyTorch深度学习建模与应用》第二章:2.1-2.3节详解,篇幅超了,缺的后面再补吧
环工人学Python
深度学习pytorch人工智能python机器学习
写在前面:点点关注不迷路,免费的赞和收藏走起来!后续更新第一时间提示哦,每周会更新不同内容,下周更新如何用各种模态的大模型去为你服务,编写代码。在深度学习的世界里,理解基础概念是构建复杂模型的关键。第二章“深度学习基础与PyTorch实现”将帮助我们深入理解深度学习的核心概念,并通过PyTorch实现这些概念。这一章的内容非常重要,因为它不仅涵盖了神经网络的基本原理,还介绍了激活函数、损失函数和优
- 机器幻觉产生的原因
人机与认知实验室
机器学习人工智能
机器幻觉是指模型生成的不符合现实的内容,比如图像生成中的错误或者不合理的输出。线性函数在神经网络中的作用通常是传递梯度,但如果每一层都是线性的,整个网络就相当于一个单层的线性模型,无法学习复杂的模式。所以如果只有线性层而没有非线性激活函数的话,网络将无法处理复杂任务。对于激活函数而言,常见的如ReLU、sigmoid、tanh。激活函数引入非线性,让网络有能力学习复杂的特征。但是如果没有合适的激活
- 异常的核心类Throwable
无量
java源码异常处理exception
java异常的核心是Throwable,其他的如Error和Exception都是继承的这个类 里面有个核心参数是detailMessage,记录异常信息,getMessage核心方法,获取这个参数的值,我们可以自己定义自己的异常类,去继承这个Exception就可以了,方法基本上,用父类的构造方法就OK,所以这么看异常是不是很easy
package com.natsu;
- mongoDB 游标(cursor) 实现分页 迭代
开窍的石头
mongodb
上篇中我们讲了mongoDB 中的查询函数,现在我们讲mongo中如何做分页查询
如何声明一个游标
var mycursor = db.user.find({_id:{$lte:5}});
迭代显示游标数
- MySQL数据库INNODB 表损坏修复处理过程
0624chenhong
tomcatmysql
最近mysql数据库经常死掉,用命令net stop mysql命令也无法停掉,关闭Tomcat的时候,出现Waiting for N instance(s) to be deallocated 信息。查了下,大概就是程序没有对数据库连接释放,导致Connection泄露了。因为用的是开元集成的平台,内部程序也不可能一下子给改掉的,就验证一下咯。启动Tomcat,用户登录系统,用netstat -
- 剖析如何与设计人员沟通
不懂事的小屁孩
工作
最近做图烦死了,不停的改图,改图……。烦,倒不是因为改,而是反反复复的改,人都会死。很多需求人员不知该如何与设计人员沟通,不明白如何使设计人员知道他所要的效果,结果只能是沟通变成了扯淡,改图变成了应付。
那应该如何与设计人员沟通呢?
我认为设计人员与需求人员先天就存在语言障碍。对一个合格的设计人员来说,整天玩的都是点、线、面、配色,哪种构图看起来协调;哪种配色看起来合理心里跟明镜似的,
- qq空间刷评论工具
换个号韩国红果果
JavaScript
var a=document.getElementsByClassName('textinput');
var b=[];
for(var m=0;m<a.length;m++){
if(a[m].getAttribute('placeholder')!=null)
b.push(a[m])
}
var l
- S2SH整合之session
灵静志远
springAOPstrutssession
错误信息:
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cartService': Scope 'session' is not active for the current thread; consider defining a scoped
- xmp标签
a-john
标签
今天在处理数据的显示上遇到一个问题:
var html = '<li><div class="pl-nr"><span class="user-name">' + user
+ '</span>' + text + '</div></li>';
ulComme
- Ajax的常用技巧(2)---实现Web页面中的级联菜单
aijuans
Ajax
在网络上显示数据,往往只显示数据中的一部分信息,如文章标题,产品名称等。如果浏览器要查看所有信息,只需点击相关链接即可。在web技术中,可以采用级联菜单完成上述操作。根据用户的选择,动态展开,并显示出对应选项子菜单的内容。 在传统的web实现方式中,一般是在页面初始化时动态获取到服务端数据库中对应的所有子菜单中的信息,放置到页面中对应的位置,然后再结合CSS层叠样式表动态控制对应子菜单的显示或者隐
- 天-安-门,好高
atongyeye
情感
我是85后,北漂一族,之前房租1100,因为租房合同到期,再续,房租就要涨150。最近网上新闻,地铁也要涨价。算了一下,涨价之后,每次坐地铁由原来2块变成6块。仅坐地铁费用,一个月就要涨200。内心苦痛。
晚上躺在床上一个人想了很久,很久。
我生在农
- android 动画
百合不是茶
android透明度平移缩放旋转
android的动画有两种 tween动画和Frame动画
tween动画;,透明度,缩放,旋转,平移效果
Animation 动画
AlphaAnimation 渐变透明度
RotateAnimation 画面旋转
ScaleAnimation 渐变尺寸缩放
TranslateAnimation 位置移动
Animation
- 查看本机网络信息的cmd脚本
bijian1013
cmd
@echo 您的用户名是:%USERDOMAIN%\%username%>"%userprofile%\网络参数.txt"
@echo 您的机器名是:%COMPUTERNAME%>>"%userprofile%\网络参数.txt"
@echo ___________________>>"%userprofile%\
- plsql 清除登录过的用户
征客丶
plsql
tools---preferences----logon history---history 把你想要删除的删除
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一起进步。
email : binary_spac
- 【Pig一】Pig入门
bit1129
pig
Pig安装
1.下载pig
wget http://mirror.bit.edu.cn/apache/pig/pig-0.14.0/pig-0.14.0.tar.gz
2. 解压配置环境变量
如果Pig使用Map/Reduce模式,那么需要在环境变量中,配置HADOOP_HOME环境变量
expor
- Java 线程同步几种方式
BlueSkator
volatilesynchronizedThredLocalReenTranLockConcurrent
为何要使用同步? java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查), 将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用, 从而保证了该变量的唯一性和准确性。 1.同步方法&
- StringUtils判断字符串是否为空的方法(转帖)
BreakingBad
nullStringUtils“”
转帖地址:http://www.cnblogs.com/shangxiaofei/p/4313111.html
public static boolean isEmpty(String str)
判断某字符串是否为空,为空的标准是 str==
null
或 str.length()==
0
- 编程之美-分层遍历二叉树
bylijinnan
java数据结构算法编程之美
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class LevelTraverseBinaryTree {
/**
* 编程之美 分层遍历二叉树
* 之前已经用队列实现过二叉树的层次遍历,但这次要求输出换行,因此要
- jquery取值和ajax提交复习记录
chengxuyuancsdn
jquery取值ajax提交
// 取值
// alert($("input[name='username']").val());
// alert($("input[name='password']").val());
// alert($("input[name='sex']:checked").val());
// alert($("
- 推荐国产工作流引擎嵌入式公式语法解析器-IK Expression
comsci
java应用服务器工作Excel嵌入式
这个开源软件包是国内的一位高手自行研制开发的,正如他所说的一样,我觉得它可以使一个工作流引擎上一个台阶。。。。。。欢迎大家使用,并提出意见和建议。。。
----------转帖---------------------------------------------------
IK Expression是一个开源的(OpenSource),可扩展的(Extensible),基于java语言
- 关于系统中使用多个PropertyPlaceholderConfigurer的配置及PropertyOverrideConfigurer
daizj
spring
1、PropertyPlaceholderConfigurer
Spring中PropertyPlaceholderConfigurer这个类,它是用来解析Java Properties属性文件值,并提供在spring配置期间替换使用属性值。接下来让我们逐渐的深入其配置。
基本的使用方法是:(1)
<bean id="propertyConfigurerForWZ&q
- 二叉树:二叉搜索树
dieslrae
二叉树
所谓二叉树,就是一个节点最多只能有两个子节点,而二叉搜索树就是一个经典并简单的二叉树.规则是一个节点的左子节点一定比自己小,右子节点一定大于等于自己(当然也可以反过来).在树基本平衡的时候插入,搜索和删除速度都很快,时间复杂度为O(logN).但是,如果插入的是有序的数据,那效率就会变成O(N),在这个时候,树其实变成了一个链表.
tree代码:
- C语言字符串函数大全
dcj3sjt126com
cfunction
C语言字符串函数大全
函数名: stpcpy
功 能: 拷贝一个字符串到另一个
用 法: char *stpcpy(char *destin, char *source);
程序例:
#include <stdio.h>
#include <string.h>
int main
- 友盟统计页面技巧
dcj3sjt126com
技巧
在基类调用就可以了, 基类ViewController示例代码
-(void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[MobClick beginLogPageView:[NSString stringWithFormat:@"%@",self.class]];
- window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
flyvszhb
javajdk
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
本机已经安装了jdk1.7,而比较早期的项目需要依赖jdk1.6,于是同时在本机安装了jdk1.6和jdk1.7.
安装jdk1.6前,执行java -version得到
C:\Users\liuxiang2>java -version
java version "1.7.0_21&quo
- Java在创建子类对象的同时会不会创建父类对象
happyqing
java创建子类对象父类对象
1.在thingking in java 的第四版第六章中明确的说了,子类对象中封装了父类对象,
2."When you create an object of the derived class, it contains within it a subobject of the base class. This subobject is the sam
- 跟我学spring3 目录贴及电子书下载
jinnianshilongnian
spring
一、《跟我学spring3》电子书下载地址:
《跟我学spring3》 (1-7 和 8-13) http://jinnianshilongnian.iteye.com/blog/pdf
跟我学spring3系列 word原版 下载
二、
源代码下载
最新依
- 第12章 Ajax(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BI and EIM 4.0 at a glance
blueoxygen
BO
http://www.sap.com/corporate-en/press.epx?PressID=14787
有机会研究下EIM家族的两个新产品~~~~
New features of the 4.0 releases of BI and EIM solutions include:
Real-time in-memory computing –
- Java线程中yield与join方法的区别
tomcat_oracle
java
长期以来,多线程问题颇为受到面试官的青睐。虽然我个人认为我们当中很少有人能真正获得机会开发复杂的多线程应用(在过去的七年中,我得到了一个机会),但是理解多线程对增加你的信心很有用。之前,我讨论了一个wait()和sleep()方法区别的问题,这一次,我将会讨论join()和yield()方法的区别。坦白的说,实际上我并没有用过其中任何一个方法,所以,如果你感觉有不恰当的地方,请提出讨论。
&nb
- android Manifest.xml选项
阿尔萨斯
Manifest
结构
继承关系
public final class Manifest extends Objectjava.lang.Objectandroid.Manifest
内部类
class Manifest.permission权限
class Manifest.permission_group权限组
构造函数
public Manifest () 详细 androi
- Oracle实现类split函数的方
zhaoshijie
oracle
关键字:Oracle实现类split函数的方
项目里需要保存结构数据,批量传到后他进行保存,为了减小数据量,子集拼装的格式,使用存储过程进行保存。保存的过程中需要对数据解析。但是oracle没有Java中split类似的函数。从网上找了一个,也补全了一下。
CREATE OR REPLACE TYPE t_split_100 IS TABLE OF VARCHAR2(100);
cr