- Pytorch使用手册—使用TACOTRON2进行文本到语音转换(专题二十四)
AI专题精讲
Pytorch入门到精通pytorch人工智能python
一、概述本教程展示了如何使用torchaudio中的预训练Tacotron2构建文本到语音的管道。文本到语音的管道流程如下:文本预处理首先,输入的文本被编码为一系列符号。在本教程中,我们将使用英语字符和音标作为符号。谱图生成从编码后的文本中生成谱图。我们使用Tacotron2模型来完成这一步。3.时域转换最后一步是将谱图转换为波形。从谱图生成语音的过程也称为Vocder(声码器)。在本教程中,我们
- Pytorch使用手册--将 PyTorch 模型导出为 ONNX(专题二十六)
AI专题精讲
Pytorch入门到精通pytorch人工智能python
注意截至PyTorch2.1,ONNX导出器有两个版本。torch.onnx.dynamo_export是最新的(仍处于测试阶段)导出器,基于PyTorch2.0发布的TorchDynamo技术。torch.onnx.export基于TorchScript后端,自PyTorch1.2.0起可用。一、torch.onnx.dynamo_export使用在60分钟入门中,我们有机会从高层次上了解PyT
- Transformer 代码剖析2 - 模型训练 (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习人工智能python
一、模型初始化模块参考:项目代码1.1参数统计函数defcount_parameters(model):returnsum(p.numel()forpinmodel.parameters()ifp.requires_grad)遍历模型参数筛选可训练参数统计参数数量返回总数技术解析:numel()方法计算张量元素总数requires_grad筛选需要梯度更新的参数统计结果反映模型复杂度,典型Tran
- Stable diffusion 3.5本地运行环境配置记录
寸先生的牛马庄园
扩散模型stablediffusion
1.环境配置创建虚环境condacreate-nsd3.5python=3.10Pytorch(>2.0)condainstallpytorch==2.2.2torchvision==0.17.2torchaudio==2.2.2pytorch-cuda=12.1-cpytorch-cnvidiaJupyter能使用Anaconda虚环境condainstallipykernelpython-mi
- PyTorch使用常见异常和解决办法汇总
东哥说AI
机器学习与深度学习实战PyTorch异常解决办法
文章目录1.使用conda安装PyTorch后同时在Jupyter导入失败Nomodulenamed'torch'2.PyTorch使用张量时报错expectedscalartypeDoublebutfoundFloat3.PyTorch创建Embedding时报错IndexError:indexoutofrangeinself1.使用conda安装PyTorch后同时在Jupyter导入失败No
- pytorch基础-比较矩阵是否相等
yuweififi
pytorch人工智能
1、使用NumPy库NumPy是Python中用于科学计算的常用库,它提供了array_equal和allclose函数来判断矩阵是否相等。array_equal用于精确比较,allclose用于考虑一定误差范围的近似比较,适合浮点数矩阵。importnumpyasnp#创建示例矩阵matrix_a=np.array([[1,2,3],[4,5,6]])matrix_b=np.array([[1,
- 深度学习模型优化与医疗诊断应用突破
智能计算研究中心
其他
内容概要近年来,深度学习技术的迭代演进正在重塑医疗诊断领域的实践范式。随着PyTorch与TensorFlow等开源框架的持续优化,模型开发效率显著提升,为医疗场景下的复杂数据处理提供了技术基座。当前研究聚焦于迁移学习与模型压缩算法的协同创新,通过复用预训练模型的泛化能力与降低计算负载,有效解决了医疗数据样本稀缺与硬件资源受限的痛点问题。与此同时,自适应学习机制通过动态调整网络参数更新策略,在病理
- 跨框架模型演进与行业应用路径
智能计算研究中心
其他
内容概要在人工智能技术持续迭代的背景下,模型框架的演进与行业应用的深度融合已成为推动产业智能化升级的核心驱动力。本文系统性梳理TensorFlow、PyTorch、MXNet等主流框架的技术发展脉络,重点分析其从通用计算架构向多模态、轻量化方向的转型路径。同时,针对模型优化技术领域,深入探讨迁移学习、超参数调优及模型压缩等方法的创新突破,揭示其在降低计算资源消耗、提升推理效率方面的关键作用。在行业
- pytorch阶段性总结2
Colinnian
pytorch人工智能python
nn神经网络functional当中卷积的使用importtorchimporttorch.nn.functionalasF#数据input=torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]])#卷积核kernel=torch.tensor([[1,2,1],[0,1,0],[2,1,0]])#min
- AI探索笔记:线性回归
安意诚Matrix
机器学习笔记人工智能笔记线性回归
前言写这篇博客,主要是自己来练练手。网络上教程已经是数不胜数,也都讲得非常清楚了。但自己不动手,知识和能力还是别人的。下面分别用传统方法(sklearn)和神经网络(pytorch)来解决线性回归问题。内容什么是线性回归线性回归(LinearRegression)是统计学和机器学习中最基础且广泛使用的预测模型,用于建立**自变量(输入特征)与因变量(输出目标)**之间的线性关系模型。其核心思想是通
- VIT(Vision Transformer)【超详细 pytorch实现
周玄九
计算机视觉transformer深度学习人工智能
CNN的局限性:传统的CNN通过局部卷积核提取特征,虽然可以通过堆叠多层卷积扩大感受野,但仍然依赖于局部信息的逐步聚合,难以直接建模全局依赖关系。ViT的优势:ViT使用自注意力机制(Self-Attention),能够直接捕捉图像中所有patch(图像块)之间的全局关系。这种全局建模能力在处理需要长距离依赖的任务(如图像分类、目标检测)时表现更好。全流程图像预处理+分块图像尺寸标准化,如(224
- PyTorch模型安卓部署流程(NCNN)全流程实战(2)代码详细解析
咕咕学不会咋办
pytorchandroidpython
代码来源PyTorch模型安卓部署流程(NCNN)全流程实战(1)至于为什么要备注,因为我基础不好,就得一点一点来适合和我一样的慢羊羊学习项目整体结构1.布局文件不解析了比较简单最简单的线性布局main.xml2.资源文件string.xmlsqueezencnn在Android开发中,资源文件(通常以.xml结尾)用于定义静态内容,如字符串、颜色、尺寸等。res/values/strings.x
- 记一次pytorch训练loss异常的问题
lyyiangang
pytorch人工智能python
记一次pytorch训练loss异常的问题问题描述使用mmdetection框架训练时,某项loss出现异常大的值,比如1781232349724294.000。这个问题只在多卡训练时才会出现。解决方法在确认target和predction没有问题后,发现是在dataset中的数据处理出现了问题。在dataset中的__getitem__函数中,对数据进行了处理,但是在处理时,将数据转换为了num
- 用PyTorch玩转数据:从整理到“看图说话
开心快乐幸福一家人
pytorch人工智能python
最近在实验室鼓捣深度学习项目,发现PyTorch的数据处理流程简直像搭乐高——每个模块都精准卡位。今天就把这套"厨房级"工具链拆解给大家看看,连我这种手残党都能轻松上手。01数据收纳术:你的专属AI管家想象你有一堆杂乱照片需要整理。PyTorch的Dataset类就像智能相册,只要定义好__getitem__(怎么找照片)和__len__(总共有多少张),它就能瞬间把你的数据码得整整齐齐。而Dat
- RuntimeError: expected dtype Double but got dtype Float
一穷二白到年薪百万
报错专栏深度学习
在使用Pytorch时报了RuntimeError:expecteddtypeDoublebutgotdtypeFloat这个错误,仔细一查才发现是数据类型的问题。在处理数据时有时会用到numpy模块,处理完数据后为了加速计算然后转为tensor,用torch的计算方式进行运算。一运行结果发现报错了,报错的原因在于,numpy默认的数据类型是float64,而torch.tensor初始化默认
- 【pytorch_geometric报错】RuntimeError: softmax() Expected a value of type
一穷二白到年薪百万
报错专栏
如果pytorch_geometric中的softmax函数报错,声明一下num_nodes变量即可。fromtransP=softmax(pipj,row,cd.size(0))totransP=softmax(pipj,row,num_nodes=cd.size(0))[1]RuntimeError:softmax()Expectedavalueoftype‘Optional[Tensor
- Windows环境安装torch_geometric库报错
一穷二白到年薪百万
报错专栏pythonanacondapip
Windows下安装,最近在学习图神经网络需要用到geometric_torch结果怎么装都装不上。查阅了各种资料尝试了各种方法,有的说是因为visualc++buildtools没有安装博客链接,有的说升级conda甚至还有的说卸载pytorch重装命,令行如下:condaupdate#升级conda所有的包官网下载地址:https://pypi.org/project/torch-geom
- 用 PyTorch/TensorFlow 搭建简单全连接神经网络
gs80140
AIpytorchtensorflow神经网络
目录用PyTorch/TensorFlow搭建简单全连接神经网络网络结构概述1.使用PyTorch构建网络2.使用TensorFlow构建网络总结用PyTorch/TensorFlow搭建简单全连接神经网络在本篇博客中,我们将介绍如何使用两大深度学习框架——PyTorch和TensorFlow,构建一个简单的全连接神经网络。该网络包含输入层、一个隐藏层和输出层,适合初学者理解神经网络的基本构建模块
- 用于训练基于pytorch构建的小型字符级语言模型的数据集汇总
搏博
大模型pytorch语言模型人工智能python学习机器学习
前文,我们从零开始基于transformer框架在pytorch上构建一个小型字符级语言模型,并编写了完整的python示例,模型是需要训练的,所以在原有代码的基础上,我们寻找一些公开的数据集对模型进行训练。本文需要先了解的前置内容以及代码(如果不训练,仅看如何获取数据集,就可以跳过这部分),可以看的我文章:从零开始构建一个小型字符级语言模型的完整详细教程(基于Transformer架构)-CSD
- 扣子和DIfy调用deepseek对比分析
ISDF-CodeInkVotex
人工智能+科技前沿杂谈人工智能
近日,与网络高人学习,用Coze调用deepseek火山引擎版满血R1大模型,可以构建自己的业务级智能体,觉得还挺好玩的。又闻言,Dify、TensorFlow、PyTorch、Keras、Fastai、HuggingFace等工具可以微调诸如deepseek、chatgpt、doubao等大模型。下面重点讲Dify和Coze在调用deepseek上的区别做一个简要分析,供个人认知扫盲。1.调用方
- 基于 YOLO 进行车道线检测与目标检测算法研究及开发的一般步骤
pk_xz123456
python算法深度学习YOLO目标检测算法
基于深度学习的车道线检测与目标检测在自动驾驶等领域有着重要应用,使用YOLO(YouOnlyLookOnce)进行开发是一种常见且高效的方式。以下是关于基于YOLO进行车道线检测与目标检测算法研究及开发的一般步骤和相关内容:1.环境搭建首先确保你的开发环境安装了必要的软件和库,推荐使用Python语言,以下是一些关键库:PyTorch:YOLO通常基于PyTorch实现,安装适合你系统的PyTor
- 安装CUDA以及GPU版本的pytorch
lskkkkkkkkkkkk
Pythonpytorch人工智能python
使用pytorch进行深度学习的时候,往往想用GPU进行运算来提高速度。于是搜索便知道了CUDA。下面给出一个自检的建议:检查cuda的版本是否适配自己的GPU。打开NVDIA控制面板,点击左下角“系统信息”,然后就可以看到NVDIAGPU的详细信息,其中就包含了CUDA的版本。在官网安装合适版本的cuda-toolkit。安装了cuda,但是命令行输入nvcc-V报错显示没有nvcc这时候可能没
- 如何将 DeepSeek 模型与 PyTorch结合使用
LCG元
大模型pytorch人工智能python
目录环境准备系统要求安装PyCharm下载DeepSeek模型使用Ollama下载模型验证模型下载本地部署DeepSeek模型使用Flask创建HTTP服务使用PyCharm调用本地服务进一步集成到开发流程封装函数自定义快捷键(可选)✍️相关问答DeepSeek模型与PyTorch结合使用的性能优化策略有哪些如何在PyCharm中设置自定义快捷键来快速调用DeepSeek服务DeepSeek模型的
- Windows 系统下,使用 PyTorch 的 DataLoader 时,如果 num_workers 参数设置为大于 0 的值,报错
张三不嚣张
pytorch人工智能python
在Windows系统下,使用PyTorch的DataLoader时,如果num_workers参数设置为大于0的值,可能会遇到以下错误:RuntimeError:Anattempthasbeenmadetostartanewprocessbeforethecurrentprocesshasfinisheditsbootstrappingphase.Thisprobablymeansthatyoua
- 从零开始:使用PyTorch构建DeepSeek R1模型及其训练详解
陆鳐LuLu
pytorch人工智能python
本文将引导你使用PyTorch从零开始构建DeepSeekR1模型,并详细解释模型架构和训练步骤。DeepSeekR1是一个假设的模型名称,为了演示目的,我们将构建一个基于Transformer的简单文本生成模型。1.模型架构DeepSeekR1的核心是一个基于Transformer的编码器-解码器架构,包含以下关键组件:EmbeddingLayer:将输入的单词索引转换为密集向量表示。Posit
- pytorch PIL对np和tensor 图像数据的显示
Tianwen_Burning
pytorch深度学习pytorchpython
(显示图像)PIL可以显示np的图像数据,np是whc的格式。在np转换为tenser格式后会自动转换为cWH的格式,tenser再转回来时,依然是cwh格式np.tranpose(1,2,0)可以将cwh格式转换为whc的格式,也就是将原来的0,1,2代表的cwh,变成whc格式代码表示是====互转的代码“tensor_a=torch.tensor(array),np_array=tensor
- IPEX-LLM: 英特尔硬件大语言模型加速库部署
Felix_bin
语言模型人工智能自然语言处理
IPEX-LLM:英特尔硬件大语言模型加速库部署大语言模型的本地部署正成为一个热门话题。本指南将帮助你掌握如何使用IPEX-LLM(IntelPyTorchExtensionforLargeLanguageModels)在英特尔硬件上实现最优化的模型部署。无论你是刚开始接触还是已经有一定经验,这份指南都能满足你的需求。IPEX-LLM的优势IPEX-LLM是英特尔基于PyTorch开发的专业优化库
- 在Intel GPU上使用IPEX-LLM进行本地BGE嵌入
shuoac
python
在现代人工智能应用中,尤其在诸如检索增强生成(RAG)和文档问答等任务中,低延迟是一个至关重要的指标。Intel的IPEX-LLM是一种专门为IntelCPU和GPU优化的PyTorch库,能够在包括本地PC上的集成显卡和独立显卡(如Arc、Flex和Max)在内的Intel硬件上以极低的延迟运行大型语言模型(LLM)。本文将介绍如何在IntelGPU上结合LangChain使用IPEX-LLM进
- 训练神经网络出现nan
崧小果
AI学习记录神经网络深度学习机器学习
在理解和修改QARV的代码时,出现了训练会因为nan而终止的问题,因此学习记录。参考资料Pytorch训练模型损失Loss为Nan或者无穷大(INF)原因Pytorch训练模型损失Loss为Nan或者无穷大(INF)原因_pytorchnan-CSDN博客文章浏览阅读5.6w次,点赞135次,收藏489次。常见原因-1一般来说,出现NaN有以下几种情况:相信很多人都遇到过训练一个deepmodel
- Pytorch(5): LeNet,ResNet,RNN,LSTM代码
weixin_51182518
rnn卷积深度学习python
1、LeNet5与ResNet18实战第一部分:LeNet5代码:importtorchfromtorchimportnnfromtorch.nnimportfunctionalasFclassLenet5(nn.Module):def__init__(self):super(Lenet5,self).__init__()self.conv_unit=nn.Sequential(nn.Conv2d
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》