import torch
from torch import nn
from torch.nn import functional as F
class Lenet5(nn.Module):
def __init__(self):
super(Lenet5, self).__init__()
self.conv_unit=nn.Sequential(
nn.Conv2d(3,16,kernel_size=5,stride=1,padding=0),
nn.MaxPool2d(kernel_size=2,stride=2,padding=0),
nn.Conv2d(16,32,kernel_size=5,stride=1,padding=0),
nn.MaxPool2d(kernel_size=2,stride=2,padding=0),
)
self.fc_unit=nn.Sequential(
nn.Linear(32*5*5,32),
nn.ReLU(),
nn.Linear(32,10)
)
def forward(self,x):
batchsz=x.size(0)
out=self.conv_unit(x)
out=out.view(batchsz,-1)
out=self.fc_unit(out)
return out
def main():
net = Lenet5()
tmp = torch.randn(2, 3, 32, 32)
out = net(tmp)
print('lenet out:', out.shape)
if __name__ == '__main__':
main()
import torch
from torch import nn
from torch.nn import functional as F
class ResBlk(nn.Module):
def __init__(self,ch_in,ch_out,stride=1):
super(ResBlk, self).__init__()
self.conv1=nn.Conv2d(ch_in,ch_out,kernel_size=3,stride=stride,padding=1)
self.bn1=nn.BatchNorm2d(ch_out)
self.conv2=nn.Conv2d(ch_out,ch_out,kernel_size=3,stride=1,padding=1)
self.bn2=nn.BatchNorm2d(ch_out)
self.extra=nn.Sequential()
if ch_in!=ch_out:
self.extra=nn.Sequential(nn.Conv2d(ch_in,ch_out,kernel_size=1,stride=stride),
nn.BatchNorm2d(ch_out))
def forward(self,x):
out=F.relu(self.bn1(self.conv1(x)))
out=self.bn2(self.conv2(out))
extra=self.extra(x)
out=out+extra
out=F.relu(out)
return out
class ResNet18(nn.Module):
def __init__(self):
super(ResNet18, self).__init__()
self.conv_first=nn.Sequential(nn.Conv2d(3,64,kernel_size=3,stride=3,padding=0),
nn.BatchNorm2d(64))
self.BLK1= ResBlk(64,128,stride=2)
self.BLK2 = ResBlk(128, 256, stride=2)
self.BLK3 = ResBlk(256, 512, stride=2)
self.BLK4 = ResBlk(512, 512, stride=2)
self.outlayer=nn.Linear(512*1*1,10)
def forward(self,x):
out=F.relu(self.conv_first(x))
out=self.BLK1(out)
out=self.BLK2(out)
out=self.BLK3(out)
out=self.BLK4(out)
out=F.adaptive_avg_pool2d(out,[1,1])
out=out.view(x.size(0),-1)
out=self.outlayer(out)
return out
def main():
blk = ResBlk(64, 128, stride=4)
tmp = torch.randn(2, 64, 32, 32)
out = blk(tmp)
print('block:', out.shape)
x = torch.randn(2, 3, 32, 32)
model = ResNet18()
out = model(x)
print('resnet:', out.shape)
if __name__ == '__main__':
main()
import torch
from torch.utils.data import DataLoader
from torchvision import datasets,transforms
from .lenet5 import Lenet5
from torch import nn
from torch import optim
def main():
'''加载数据集'''
batchsz=128
cifar_train=datasets.CIFAR10("cifar",True,transform=transforms.Compose([
transforms.Resize((32,32)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485,0.456,0.406],
std=[0.229,0.225,0.225])
]),download=True)
cifar_train=DataLoader(cifar_train,batch_size=batchsz,shuffle=True)
cifar_test = datasets.CIFAR10("cifar", False, transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.225, 0.225])
]), download=True)
cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)
x,label=next(iter(cifar_train))
print("x:",x.shape,"label:",label.shape)
device=torch.device("cuda")
model=Lenet5().to(device)
criterion=nn.CrossEntropyLoss.to(device)
optimizer=optim.Adam(model.parameters(),lr=1e-3)
for epoch in range(1000):
model.train()
for batch_idx, (x,label) in enumerate(cifar_train):
x, label = x.to(device), label.to(device)
logits=model(x)
loss=criterion(logits,label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(epoch,"loss:",loss.item())
model.eval()
with torch.no_grad:
total_correct=0
total_num=0
for x,label in cifar_test:
logits=model(x)
pred=logits.argmax(dim=1)
total_correct+=torch.eq(pred,label).float().sum().item()
total_num+=x.size(0)
acc=total_correct/total_num
print(epoch,"acc:",acc)
if __name__ == '__main__':
main()
只用线性层的缺点: