10_ElasticSearch dis_max实现best fields策略进行多字段搜索

10_ElasticSearch dis_max实现best fields策略进行多字段搜索

更多干货

  • 分布式实战(干货)
  • spring cloud 实战(干货)
  • mybatis 实战(干货)
  • spring boot 实战(干货)
  • React 入门实战(干货)
  • 构建中小型互联网企业架构(干货)
  • python 学习持续更新
  • ElasticSearch 笔记

概述

best fields策略 概念

  • 基于多个 field 查询如 title(标题) content 内容.
  • 搜索title或content中包含java或solution的帖子
  • 期望:如果title中包含了java和solution 。或者 content 中保护 java和solution 这样的doc 优先排在前面。
  • best fields策略,就是说,搜索到的结果,应该是某一个field中匹配到了尽可能多的关键词,被排在前面;而不是尽可能多的field匹配到了少数的关键词,排在了前面。

例子

1、title 字段

POST /forum/article/_bulk
{ "update": { "_id": "1"} }
{ "doc" : {"title" : "this is java and elasticsearch blog"} }
{ "update": { "_id": "2"} }
{ "doc" : {"title" : "this is java blog"} }
{ "update": { "_id": "3"} }
{ "doc" : {"title" : "this is elasticsearch blog"} }
{ "update": { "_id": "4"} }
{ "doc" : {"title" : "this is java, elasticsearch, hadoop blog"} }
{ "update": { "_id": "5"} }
{ "doc" : {"title" : "this is spark blog"} }

2、为帖子数据增加content字段

POST /forum/article/_bulk
{ "update": { "_id": "1"} }
{ "doc" : {"content" : "i like to write best elasticsearch article"} }
{ "update": { "_id": "2"} }
{ "doc" : {"content" : "i think java is the best programming language"} }
{ "update": { "_id": "3"} }
{ "doc" : {"content" : "i am only an elasticsearch beginner"} }
{ "update": { "_id": "4"} }
{ "doc" : {"content" : "elasticsearch and hadoop are all very good solution, i am a beginner"} }
{ "update": { "_id": "5"} }
{ "doc" : {"content" : "spark is best big data solution based on scala ,an programming language similar to java"} }

3、搜索title或content中包含java或solution的帖子

下面这个就是multi-field搜索,多字段搜索

GET /forum/article/_search
{
    "query": {
        "bool": {
            "should": [
                { "match": { "title": "java solution" }},
                { "match": { "content":  "java solution" }}
            ]
        }
    }
}

4、结果分析

  • 期望的是doc5,结果是doc2, doc4排在了前面 (doc 5 中 content字段 中保护了 java 和 solution)
  • 计算每个document的relevance score:每个query的分数,乘以matched query数量,除以总query数量

算一下doc4的分数

{ "match": { "title": "java solution" }},针对doc4,是有一个分数的
{ "match": { "content":  "java solution" }},针对doc4,也是有一个分数的

所以是两个分数加起来,比如说,1.1 + 1.2 = 2.3
matched query数量 = 2
总query数量 = 2

2.3 * 2 / 2 = 2.3

算一下doc5的分数

{ "match": { "title": "java solution" }},针对doc5,是没有分数的
{ "match": { "content":  "java solution" }},针对doc5,是有一个分数的

所以说,只有一个query是有分数的,比如2.3
matched query数量 = 1
总query数量 = 2

2.3 * 1 / 2 = 1.15

doc5的分数 = 1.15 < doc4的分数 = 2.3

5、best fields策略,dis_max

  • best fields策略,就是说,搜索到的结果,应该是某一个field中匹配到了尽可能多的关键词,被排在前面;而不是尽可能多的field匹配到了少数的关键词,排在了前面
  • dis_max语法,直接取多个query中,分数最高的那一个query的分数即可
{ "match": { "title": "java solution" }},针对doc4,是有一个分数的,1.1
{ "match": { "content":  "java solution" }},针对doc4,也是有一个分数的,1.2
取最大分数,1.2
{ "match": { "title": "java solution" }},针对doc5,是没有分数的
{ "match": { "content":  "java solution" }},针对doc5,是有一个分数的,2.3
取最大分数,2.3

然后doc4的分数 = 1.2 < doc5的分数 = 2.3,所以doc5就可以排在更前面的地方,符合我们的需要

GET /forum/article/_search
{
    "query": {
        "dis_max": {
            "queries": [
                { "match": { "title": "java solution" }},
                { "match": { "content":  "java solution" }}
            ]
        }
    }
}

相关文章

  • ElasticSearch 笔记
  • 1_ElatisSearch使用term filter来搜索数据

  • 2_ElatisSearch filter执行原理 bitset机制与caching机制

  • 3_ElatisSearch 基于bool组合多个filter条件来搜索数据

  • 4_ElatisSearch 使用terms搜索多个值

  • 5_ElatisSearch 基于range filter来进行范围过滤

  • 6_ElatisSearch 控制全文检索结果的精准度

  • 7_ElatisSearch term+bool实现的multiword搜索原理

  • 8_基于boost的搜索条件权重控制

  • 9_ElastisSearch 多shard场景下relevance score不准确

  • 日志管理ELK


你可能感兴趣的:(【构建高可用架构】,【大数据】,【ElatisSearch】)