求解:argmaxc P(a|w)->argmaxc P(w|a)P(a)/P(w)
P(a):语料库中一个词正确拼写得概率;该词在在语料库中得概率
P(w|c):用户实际想敲a却敲成w的概率;用户有多大概率会把c敲成w
argmaxc :用来枚举所用的a,并且选取最大的
把语料中的单词全部抽取出来, 转成小写, 并且去除单词中间的特殊符号
def words(text): return re.findall(’[a-z]+’, text.lower())
def train(features):
model = collections.defaultdict(lambda: 1)
for f in features:
model[f] += 1
return model
NWORDS = train(words(open(‘big.txt’).read()))
alphabet = ‘abcdefghijklmnopqrstuvwxyz’
假如说一个词拼写完全正确, 但是语料库中没有包含这个词, 从而这个词也永远不会出现在训练集中. 于是, 我们就要返回出现这个词的概率是0. 这个情况不太妙, 因为概率为0这个代表了这个事件绝对不可能发生, 而在我们的概率模型中, 我们期望用一个很小的概率来代表这种情况. lambda: 1
两个词之间的编辑距离定义为使用了几次插入,删除,交换,替换变成另外一个词;在这里编辑距离越小则概率越大。小型项目,使用编辑距离为1,2
返回所有与单词 w 编辑距离为 1 的集合
def edits1(word):
n = len(word)
return set([word[0:i]+word[i+1:] for i in range(n)] + # deletion
[word[0:i]+word[i+1]+word[i]+word[i+2:] for i in range(n-1)] + # transposition
[word[0:i]+c+word[i+1:] for i in range(n) for c in alphabet] + # alteration
[word[0:i]+c+word[i:] for i in range(n+1) for c in alphabet]) # insertion
编辑距离为2 的集合
def edits2(word):
return set(e2 for e1 in edits1(word) for e2 in edits1(e1))
编辑距离为1的正确单词比编辑距离为2的优先级高, 而编辑距离为0的正确单词优先级比编辑距离为1的高.
def known(words): return set(w for w in words if w in NWORDS)
如果known(set)非空, candidate 就会选取这个集合, 而不继续计算后面的
def correct(word):
candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]
return max(candidates, key=lambda w: NWORDS[w])
github:拼写检查源码