- 【收藏】 Kafka监控组件大全
weixin_34038652
大数据操作系统netty
本文使用Burrow和Telegraf搭建Kafka的监控体系。然后,简单介绍一下其他的,比如KafkaManager,KafkaEagle,ConfluentControlCenter等。如果你对kafka比较陌生,请参考:Kafka基础知识索引Burrow依赖路径使用Burrow拉取kafka的监控信息,然后通过telegraf进行收集,最后写入到influxdb中。使用grafana进行展示
- Burrow - Kafka 消费者滞后检查工具
虞耀炜
Burrow-Kafka消费者滞后检查工具BurrowKafkaConsumerLagChecking项目地址:https://gitcode.com/gh_mirrors/bu/Burrow项目基础介绍和主要编程语言Burrow是一个由LinkedIn开发的开源项目,旨在为ApacheKafka提供消费者滞后检查服务。该项目的主要编程语言是Go,利用Go语言的高效性能和并发处理能力,Burrow
- 探索Kafka监控新维度:Burrow深度解析
孙爽知Kody
探索Kafka监控新维度:Burrow深度解析BurrowKafkaConsumerLagChecking项目地址:https://gitcode.com/gh_mirrors/bu/Burrow项目介绍在大数据领域,ApacheKafka作为实时数据流处理的领军者,其稳定性和性能备受赞誉。然而,对于消费者端的监控始终是一个挑战。这时,LinkedIn开源的Burrow应运而生,它是一款专为Kaf
- 事件驱动架构(EDA):不止是代码,更是现代运维的灵魂
运维开发王义杰
系统运维系统架构aws架构运维
今天我们来聊一个在云原生时代越来越火热的概念——事件驱动架构(Event-DrivenArchitecture,EDA)。大家可能在浏览AWSEventBridge、ApacheKafka或RabbitMQ的文档时遇到过它。起初,可能会觉得这只是软件工程师在设计微服务时用到的一种模式。但如果我们深入思考就会发现,EDA的精髓早已渗透到现代系统运维的方方面面,甚至可以说,它是一种构建和管理高韧性、高
- 大数据面试必备:Kafka性能优化 Producer与Consumer配置指南
Kafka面试题-在Kafka中,如何通过配置优化Producer和Consumer的性能?回答重点在Kafka中,通过优化Producer和Consumer的配置,可以显著提高性能。以下是一些关键配置项和策略:1、Producer端优化:batch.size:批处理大小。增大batch.size可以使Producer每次发送更多的消息,但要注意不能无限制增大,否则会导致内存占用过多。linger
- Beam2.61.0版本消费kafka重复问题排查
隔壁寝室老吴
kafkalinq分布式
1.问题出现过程在测试环境测试flink的job的任务消费kafka的情况,通过往job任务发送一条消息,然后flinkwebui上消费出现了两条。然后通过重启JobManager和TaskManager后,任务从checkpoint恢复后就会出现重复消费。当任务不从checkpoint恢复的时候,任务不会出现重复消费的情况。由此可见是beam从checkpoint恢复的时候出现了重复消费的问题。
- 支持java8的kafka版本
兮动人
kafka分布式支持java8的kafka版本
文章目录1.Kafka支持Java8的版本范围2.官方建议与兼容性3.版本迁移建议4.关键时间点5.注意事项6.总结1.Kafka支持Java8的版本范围Kafka2.x和3.x版本:Kafka2.x和3.x版本(如2.8.0、3.0.0等)理论上支持Java8,但官方已逐步弃用对Java8的支持。Kafka3.0:官方在3.0版本中弃用Java8(但仍允许使用),并强烈建议升级到Java11或更
- Flink SQL Connector Kafka 核心参数全解析与实战指南
Edingbrugh.南空
kafkaflink大数据flinksqlkafka
FlinkSQLConnectorKafka是连接FlinkSQL与Kafka的核心组件,通过将Kafka主题抽象为表结构,允许用户使用标准SQL语句完成数据读写操作。本文基于ApacheFlink官方文档(2.0版本),系统梳理从表定义、参数配置到实战调优的全流程指南,帮助开发者高效构建实时数据管道。一、依赖配置与环境准备1.1Maven依赖引入在FlinkSQL项目中使用Kafka连接器需添加
- 大数据领域数据工程的消息中间件选型
大数据洞察
大数据与AI人工智能大数据ai
大数据领域数据工程的消息中间件选型关键词:消息中间件、数据工程、大数据处理、选型标准、分布式系统、实时数据流、可靠性保障摘要:在大数据领域的数据工程实践中,消息中间件是构建高可靠、高可扩展数据管道的核心组件。本文从技术架构、功能需求、应用场景等维度,系统解析消息中间件选型的关键要素。通过对比Kafka、Pulsar、RabbitMQ、RocketMQ等主流中间件的技术特性,结合数学模型分析吞吐量、
- 【基础篇-消息队列】——详解 RocketMQ 和 Kafka 的消息模型
小志的博客
消息队列消息队列
目录一、引入前提二、通过示例详解RocketMQ和Kafka的消息模型2.1、示例说明2.2、消息生产端2.3、消息消费端2.3.1、单个消费组2.3.2、多个消费组2.3.3、消费组的内部2.3.4、消费位置本文来源:极客时间vip课程笔记一、引入前提我在看《【基础篇-消息队列】——消息模型中的主题和队列有什么区别》这节课的留言时发现,不少同学对RocketMQ和kafka的消息模型理解的还不是
- Python 解析 Kafka 消息队列的高吞吐架构
```htmlPython解析Kafka消息队列的高吞吐架构Python解析Kafka消息队列的高吞吐架构Kafka是一个分布式、高吞吐量的消息队列系统,广泛应用于实时数据处理和流式计算场景。Python作为一种灵活且易于使用的编程语言,在与Kafka集成时提供了多种库支持,例如kafka-python和confluent-kafka。本文将探讨如何使用Python构建高效的Kafka消息队列应用
- SpringBoot整合kafka报could not be established. Broker may not be available.
ls65535
中间件Connectiontonode0(localhost/12couldnotbeestablished.Brokerma
SpringBoot整合kafka报couldnotbeestablished.Brokermaynotbeavailable.报错日志[AdminClientclientId=adminclient-1]Connectiontonode0(localhost/127.0.0.1:9092)couldnotbeestablished.Brokermaynotbeavailable.[AdminCl
- 大数据领域Kafka的性能优化案例分析
AGI大模型与大数据研究院
大数据kafka性能优化ai
大数据领域Kafka的性能优化案例分析关键词:Kafka、性能优化、吞吐量、延迟、分区策略、消息压缩、监控调优摘要:本文深入探讨ApacheKafka在大数据环境中的性能优化策略。我们将从Kafka的核心架构出发,分析影响性能的关键因素,并通过实际案例展示如何通过配置调优、分区策略优化、消息压缩等技术手段显著提升Kafka集群的性能。文章包含详细的性能测试数据、优化前后的对比分析,以及可落地的优化
- Kafka深入学习及运维工作笔记
喝醉酒的小白
Kafkakafka学习运维
目录标题Kafka深入学习及运维工作笔记一、Kafka学习路径总览1.1学习阶段划分1.2学习资源推荐二、Kafka基础入门2.1Kafka核心概念2.1.1基础架构组件2.1.2关键术语解析2.2Kafka工作原理与核心功能2.2.1消息传递机制2.2.2核心功能特性2.3Kafka安装与基本操作2.3.1环境准备2.3.2安装与启动2.3.3基本操作命令三、Kafka进阶学习3.1Kafka架
- 基于Kafka实现企业级大数据迁移的完整指南
亲爱的非洲野猪
kafka大数据linq
在大数据时代,数据迁移已成为企业数字化转型过程中的常见需求。本文将详细介绍如何利用Kafka构建高可靠、高性能的大数据迁移管道,涵盖从设计到实施的完整流程。一、为什么选择Kafka进行数据迁移?Kafka作为分布式消息系统,具有以下独特优势:高吞吐:单集群可支持每秒百万级消息处理低延迟:端到端延迟可控制在毫秒级持久性:数据可持久化存储,防止丢失水平扩展:可轻松扩展应对数据量增长多消费者:支持多个系
- 使用 Apache Kafka 的关键要点:开发者必知指南
亲爱的非洲野猪
apachekafka分布式
ApacheKafka是一个高吞吐量、分布式、可水平扩展的消息队列系统,广泛应用于实时数据流处理、日志聚合、事件驱动架构等场景。本文将整理Kafka的核心关键点,帮助开发者高效使用Kafka。1.Kafka核心概念(1)基本组件Producer:消息生产者,向Kafka发送数据。Consumer:消息消费者,从Kafka读取数据。Broker:Kafka服务器节点,负责存储和转发消息。Topic:
- RocketMQ--为什么性能不如Kafka?
IT利刃出鞘
MQrocketmqkafka分布式
原文网址:RocketMQ--为什么性能不如Kafka?-CSDN博客简介本文介绍RocketMQ为什么性能不如Kafka?阿里中间件团队对它们做过压测,同样条件下,kafka比RocketMQ快50%左右。为什么RocketMQ参考了Kafka的架构,却不能跟kafka保持一样的性能呢?读消息的方式为了防止消息队列的消息丢失,一般不会放内存里,而是放磁盘上。消息从消息队列的磁盘,发送到消费者,过
- 69、Flink 的 DataStream Connector 之 Kafka 连接器详解
猫猫爱吃小鱼粮
Flink-1.19从0到精通flinkkafka大数据
1.概述Flink提供了Kafka连接器使用精确一次(Exactly-once)的语义在Kafkatopic中读取和写入数据。目前还没有Flink1.19可用的连接器。2.KafkaSourcea)使用方法KafkaSource提供了构建类来创建KafkaSource的实例。以下代码片段展示了如何构建KafkaSource来消费“input-topic”最早位点的数据,使用消费组“my-group
- Kafka 核心术语详解
showyoui
Kafkakafka分布式
文章目录1.集群架构层Cluster(集群)Broker(代理服务器)2.存储架构层Topic(主题)Partition(分区)Message(消息)3.副本机制Leader/FollowerISR(In-SyncReplicas)副本加入ISR的条件副本被移出ISR的条件Leader选举机制ISR维护机制4.客户端Producer(生产者)Consumer(消费者)ConsumerGroup(消
- SSE和Kafka应用场景对比
老兵发新帖
kafka分布式
SSE(Server-SentEvents)和Kafka是两种完全不同定位的技术,分别解决不同场景下的数据流问题。以下是结构化对比:⚡核心定位差异特性SSE(Server-SentEvents)Kafka本质基于HTTP的客户端-服务端单向通信协议分布式消息队列/流处理平台设计目标服务端主动向浏览器推送实时数据高吞吐、持久化、解耦的生产者-消费者模型数据方向单向:服务端→客户端双向:生产者→Kaf
- Spring Boot 集成 Apache Kafka 实战指南
超级小忍
SpringBootspringbootapachekafka
ApacheKafka是一个分布式流处理平台,广泛用于构建实时数据管道、日志聚合系统和事件溯源架构。SpringBoot提供了对Kafka的良好集成支持,使得开发者可以非常便捷地在项目中使用Kafka。本文将手把手教你如何在SpringBoot项目中集成Kafka,包括生产者(Producer)和消费者(Consumer)的实现,并提供完整的代码示例。开发环境准备Java17+Maven或Grad
- 分布式系统中的 Kafka:流量削峰与异步解耦(一)
计算机毕设定制辅导-无忧
#Kafkakafka分布式
引言**在当今数字化时代,分布式系统已成为构建大规模、高并发应用的关键架构。随着业务的快速发展,分布式系统面临着诸多挑战,其中流量高峰和系统组件间的强耦合问题尤为突出。当大量请求瞬间涌入系统,犹如汹涌的潮水,可能导致系统负载过高,响应迟缓,甚至崩溃。而系统中各个组件紧密耦合,相互依赖,牵一发而动全身,一个微小的变化或故障都可能引发连锁反应,影响整个系统的稳定性和可用性。在这样的背景下,Kafka作
- Kafka Streams架构深度解析:从并行处理到容错机制的全链路实践
Edingbrugh.南空
kafkakafka架构
在流处理技术领域,KafkaStreams以其轻量级架构与Kafka生态的深度整合能力脱颖而出。作为构建在Kafka生产者/消费者库之上的流处理框架,它通过利用Kafka原生的分区、副本与协调机制,实现了数据并行处理、分布式协调与容错能力的无缝集成。本文将从架构设计、核心概念到容错机制,全面解析KafkaStreams的技术实现细节。一、KafkaStreams核心架构概述KafkaStreams
- 深度解密消息传递的三大保障
一只牛博
#kafkakafka消息队列消息传递
欢迎来到我的博客,代码的世界里,每一行都是一个故事深度解密消息传递的三大保障前言至少一次传递Kafka如何确保消息至少被传递一次:不同场景下至少一次传递的应用和性能权衡:精确一次传递实现精确一次性传递的机制:性能考虑:最多一次传递实现最多一次传递的机制:注意事项和权衡:前言在数字世界的信息传递中,保障是信息安全的重要支柱。Kafka以其可靠性而著称,但这并非单一的保障,而是三重誓言。本文将引领你穿
- Kafka 主题和分区详解
showyoui
Kafkakafka分布式运维开源大数据
Topic和Paritition基础概念文章目录Topic和Paritition基础概念分区数量设计考量更多分区带来更高吞吐量更多分区需要更多文件句柄Kafka索引机制详解更多分区导致更高不可用性风险更多分区增加端到端延迟更多分区需要客户端更多内存常见问题与解决方案1.主题删除失败2.`__consumer_offsets`占用过多磁盘空间最佳实践建议分区数量规划监控指标性能调优Topic是Kaf
- Redis Stream:实时数据流的处理与存储
foundbug999
redis数据库缓存
RedisStream是Redis5.0引入的一个强大的数据结构,专门用于处理实时数据流。它类似于ApacheKafka和RabbitMQ等消息队列系统,但集成在Redis这个内存数据库中,使得Redis不仅能处理缓存和存储,还能高效地处理实时数据流。本文将深入探讨RedisStream的特性、使用方法以及在实际应用中的优势。一、RedisStream简介RedisStream是一种日志结构,记录
- 探秘Flink Connector加载机制:连接外部世界的幕后引擎
Edingbrugh.南空
flink大数据flink大数据
在Flink的数据处理生态中,SourceFunction负责数据的输入源头,而真正架起Flink与各类外部存储、消息系统桥梁的,则是Connector。从Kafka消息队列到HDFS文件系统,从MySQL数据库到Elasticsearch搜索引擎,Flink通过Connector实现了与多样化外部系统的交互。而这一切交互的基础,都离不开背后强大且精巧的Connector加载机制。接下来,我们将深
- 基于pyspark的北京历史天气数据分析及可视化_实时
大数据CLUB
spark数据分析可视化数据分析数据挖掘sparkhadoop大数据
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、kafka2.8.2开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据写kafka(python)
- 性能监控与智能诊断系统的全流程
智能运维(AIOps)系统架构。核心目标:解决企业面临的性能问题、资源瓶颈、服务异常,实现从被动响应到主动预防、智能诊断的转变。关键特性:全链路覆盖:从日志采集到最终告警展示。实时处理:基于流处理引擎(Storm)快速加工数据。智能分析:引入AI进行根因分析。闭环进化:告警反馈驱动模型训练,系统自学习优化。解耦设计:各模块职责清晰,通过消息队列(Kafka)连接。系统全流程解析(分步详解):起点:
- Spring Boot集成Apache Kafka实现消息驱动
wx_tangjinjinwx
springbootapachekafka
SpringBoot集成ApacheKafka实现消息驱动大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!ApacheKafka是一个分布式流处理平台,广泛用于构建实时数据管道和流处理应用程序。SpringBoot提供了对ApacheKafka的集成支持,使得在SpringBoot应用中实现消息驱动变得简单。本文将介绍如何在SpringBoot中集成ApacheK
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1