- Flink Cdc TiDB详解
24k小善
flink大数据java
1.什么是FlinkTiDBCDC?简单说就是用Flink实时抓取TiDB数据库的数据变化(比如新增、修改、删除),并将这些变化数据以流的形式处理,用于实时分析、同步到其他系统等场景。TiDB本身是分布式数据库,而Flink是流处理引擎,两者的结合适合需要高吞吐、低延迟的大规模数据处理场景[7][8]。2.底层原理TiDB侧:通过TiCDC组件(TiDB的变更数据捕获工具)捕获数据变更,类似MyS
- oceanbase与mysql性能对比_金融业分布式数据库:TDSQL、HotDB、OceanBase等原理、POC性能对比及选择是......
高中物理宋老师
本帖最后由Amygo于2020-3-1501:33编辑1、分布式的实现,是通过中间件实现分布式,还是源码级别引入分布式算法实现的?解答:(1)分布式数据库是至少由计算节点、存储节点、管理平台、备份还原程序四个部分组成,从数据库系统理论知识上说分成:全局自治和场地自治,也粗略认为:全局可理解为计算节点、场地可理解为存储节点(2)这个问题的标题“中间件实现分布式还是源码级别引入分布式算法”这个说法存在
- oceanbase 是不是架构比较复杂 和mysql对比分析
hxsln11
金融数据库oceanbase架构mysql
我先来分析用户的需求。用户的问题是关于OceanBase和MySQL的架构复杂度对比,并希望了解两者在架构上的具体差异。这是一个技术性较强的问题,用户可能是数据库开发者、架构师或者对分布式数据库感兴趣的学习者。结合上下文,用户之前已经提到过OceanBase的学习曲线较陡峭,可能是因为其分布式架构的复杂性,所以这次的问题很可能是想进一步明确OceanBase和MySQL在架构上的具体差异,以及为什
- Couchbase Analytics 的结构
PersistDZ
数据存储couchbase
CouchbaseAnalytics的结构CouchbaseAnalytics服务专为大规模、并发、复杂的分析查询而设计,同时不会影响事务性工作负载的性能。下面将详细介绍其结构和架构,以帮助您深入理解CouchbaseAnalytics的运作方式。1.Couchbase集群架构CouchbaseServer是一个多维度可扩展的分布式数据库,其核心架构由多个服务组成:数据服务(DataService
- python3实现爬取淘宝页面的商品的数据信息(selenium+pyquery+mongodb)
flood_d
mongodbpythonseleniumpyquery爬虫
1.环境须知做这个爬取的时候需要安装好python3.6和selenium、pyquery等等一些比较常用的爬取和解析库,还需要安装MongoDB这个分布式数据库。2.直接上代码spider.pyimportrefromconfigimport*importpymongofromseleniumimportwebdriverfromselenium.common.exceptionsimportT
- Go语言分布式ID生成策略优选:UUID、Snowflake、XID、ObjectID、Krand性能对比评测
zhuyasen
golang分布式
在高并发应用场景下,如订单系统、分布式数据库主键、消息队列等,分布式ID的生成至关重要。本文将基于Go语言,对多种分布式ID生成方案进行基准测试(Benchmark),并分析其性能及适用场景,帮助开发者选择最优方案。常见分布式ID生成方案在Go语言生态中,常见的分布式ID生成方案包括:XID(github.com/rs/xid):基于MongoDBObjectID改进的方案,时间排序、唯一性强、无
- 软件架构师--数据库系统
一蓑烟雨*任平生
软件架构师数据库1024程序员节
一、分布式数据库1.分片透明性分片透明性:分不分片,用户感受不到(不关心如何分片存储)。位置透明性:数据存放在哪里,用户不用管(用户无需知道数据存放的物理位置)复制透明性:不关心结点的复制情况。局部数据模型透明性(逻辑透明):用户或应用程序无需知道局部场地使用的是哪种数据模型。2.两阶段提交协议2PC2PC事务提交的两个阶段①表决阶段,目的是形成一个共同的决定②执行阶段,目的是实现这个协调者的决定
- 【从零开始学习计算机科学】数据库系统(十一)云数据库、NoSQL 与 NewSQL
贫苦游商
数据库学习nosqlnewsql云数据库CAPsql
【从零开始学习计算机科学】数据库系统(十一)云数据库、NoSQL与NewSQL云数据库云服务器的服务云数据库和传统的分布式数据库的异同NoSQLNoSQL数据库的特点CAP定理NoSQL的特性NoSQL数据库的分类NoSQL的适用场景Nosql数据库实例-RedisRedis的优势MongoDBMongoDB的特点NewSQLNewSQL出现的背景NewSQL(新型分布式数据库)的概念NewSQL
- 分布式数据库OceanBase
HBryce24
数据库分布式oceanbase
三地五中心部署同步示例三地:城市A、城市B、城市C(3个不同的地理位置)。五中心:总共有5个数据中心(Zone),分布如下:城市A:Zone1(R/W)、Zone2(R/W)城市B:Zone3(R/W)、Zone4(R/W)城市C:Zone5(RO)一、读写副本(R/WZone)与只读副本(ROZone)的数量Zone类型数量角色说明R/WZone4参与写入投票,可成为主副本ROZone1仅支持异
- 崖山YashanDB:下一代国产分布式数据库的架构革新与行业实践
Lethehong
热点时事数据库架构分布式
嗨,我是Lethehong!立志在坚不欲说,成功在久不在速欢迎关注:点赞⬆️留言收藏欢迎使用:小智初学计算机网页IT深度知识智能体欢迎使用:深探助手deepGuide网页deepseek智能体目录第一章:YashanDB的崛起背景与战略定位1.1国产数据库的破局时刻1.2YashanDB的差异化定位第二章:核心技术架构解析2.1存储引擎:LSM-Tree的革新设计2.2分布式事务引擎:YTSI协议
- 一张表多少记录,会成为大表?如何计算
18你磊哥
mysql数据库mysql
首先,“大表”的定义并不是绝对的。不同的数据库系统、不同的硬件配置、不同的查询模式,对“大”的定义可能都不一样。比如,对于MySQL来说,百万级别的记录可能已经算大表,而对于一些分布式数据库,可能处理十亿级别的数据才算挑战。接下来,用户可能想知道如何判断自己的表是否过大,以及如何计算这个阈值。这时候,我需要考虑几个方面:数据量、性能指标、存储引擎的特性、索引情况、查询复杂度等。数据量方面,表的记录
- 一致性哈希HashRing
留白1108
哈希算法算法一致性哈希
一致性哈希HashRing一致性哈希算法是一种高效的分布式存储和负载均衡技术,广泛应用于分布式系统中,如缓存集群、分布式数据库等。它通过将数据和节点映射到一个环形的哈希空间,实现了数据的均匀分布和节点的动态扩展。本文将详细介绍一致性哈希算法的原理,并通过一个完整的Java实现来展示其应用。一、一致性哈希算法原理一致性哈希算法的核心思想是将数据和节点映射到一个环形的哈希空间中。具体步骤如下:1.哈希
- ShardingSphere 和 Spring 的动态数据源切换机制的对比以及原理
龙大.
系统设计SpringMysqlspringjava数据库
ShardingSphere与Spring动态数据源切换机制的对比及原理一、核心定位对比维度ShardingSphereSpring动态数据源(如AbstractRoutingDataSource)定位分布式数据库中间件轻量级多数据源路由工具核心目标分库分表、读写分离、分布式事务多数据源动态切换适用场景大数据量、高并发、复杂分片需求简单多数据源隔离(如多租户、环境隔离)实现层级JDBC驱动层(拦截
- PingCAP 连续两年入选 Gartner 云数据库管理系统魔力象限“荣誉提及”
TiDB_PingCAP
数据库tidb开源分布式
近日,全球IT市场研究和咨询公司Gartner®发布最新报告《MagicQuadrant™forCloudDatabaseManagementSystems》(云数据库管理系统魔力象限),PingCAP因其企业级开源分布式数据库TiDB在全球市场的表现,连续两年入选“荣誉提及”。报告深入分析了云数据库的发展趋势和市场需求,聚焦于“愿景完整性”和“执行能力”两大关键维度,通过15项核心指标对全球领先
- 什么是TiDB,什么是分布式数据库?它和 MySQL 比优缺点是什么?
蒂法就是我
数据库tidb分布式
TiDB简介与分布式数据库概念一、什么是分布式数据库?分布式数据库是一种将数据分散存储在多个物理节点上的数据库系统,通过分布式架构实现水平扩展、高可用性和容错能力。核心特点包括:数据分片(Sharding):将数据划分为多个分片,分布到不同节点。多副本冗余:每个分片存储多个副本,确保数据安全与高可用。分布式事务:支持跨节点的ACID事务(如两阶段提交、Percolator协议)。透明访问:用户无需
- 最硬核DNS详解
运维开发那些事
linuxlinux
1、是什么DNS(域名系统)是互联网的一项服务,它作为将域名和IP地址相互映射的一个分布式数据库,能够使人更方便地访问互联网。DNS协议基于UDP协议,使用端口号53。2、域名服务器类型域名服务器在DNS体系中扮演着不同的角色,根据其功能和位置可以分为几种类型。以下是主要的域名服务器类型:根域名服务器:根域名服务器是DNS层次结构的最高层,它们并不直接提供具体的域名解析结果,而是指引查询到正确的顶
- 高可用架构选型指南:MHA、Percona PXC与MySQL MGR对比与实践示例
mysql主从服务器sql
高可用架构选型指南:MHA、PerconaPXC与MySQLMGR对比与实践示例在分布式数据库系统中,高可用性(HighAvailability,HA)是保障业务连续性的核心需求。本文基于MHA、PerconaPXC和MySQLMGR三种主流高可用架构的对比,结合实际场景示例,帮助开发者快速选择适合的技术方案。以下是MHA、PerconaPXC和MySQLMGR三种高可用架构的对比总结及选型建议:
- 基于HarmonyNext的跨设备分布式数据库开发实战指南
harmonyos-next
基于HarmonyNext的跨设备分布式数据库开发实战指南引言在HarmonyNext生态系统中,跨设备分布式数据库是一个极具挑战性和创新性的领域。随着数据量的爆炸式增长和跨设备协作需求的增加,如何高效地管理和访问分布式数据成为了开发者面临的挑战。本指南将深入探讨如何利用HarmonyNext的分布式能力,结合ArkTS语言,开发一个高性能的跨设备分布式数据库。我们将通过一个实际的案例,详细讲解如
- Mycat 与分布式 ID 生成方案
今天你慧了码码码码码码码码码码
分布式
Mycat与分布式ID生成方案1.Mycat简介Mycat是一个开源的分布式数据库中间件,主要用于解决数据库分库分表、读写分离、负载均衡等问题。它支持MySQL协议,可以像使用单机数据库一样使用分布式数据库。主要功能:分库分表:将数据分散到多个数据库实例中。读写分离:将读操作和写操作分发到不同的数据库节点。负载均衡:均衡分配数据库请求,提高系统性能。分布式事务:支持分布式事务管理。2.分布式ID生
- GaussDB 学习进阶路线-进阶篇:分布式架构、性能调优与高可用实战
Jan123.
gaussdb学习分布式
引言GaussDB的进阶能力体现在对分布式架构、企业级高可用、深度性能优化的掌握上。本文将以生产环境为背景,深入剖析GaussDB的数据分片、并行计算、主备容灾、云原生集成等核心技术,结合实战配置与调优案例,助你解锁GaussDB的高阶技能,构建稳定高效的分布式数据库系统!一、分布式架构:数据分片与并行计算1.分布式表设计与数据分片分片策略策略适用场景示例哈希分片数据均匀分布,避免热点DISTRI
- GaussDB 学习实战指南:从部署到高并发优化的全流程解析
Jan123.
gaussdb学习
引言GaussDB作为华为推出的高性能分布式数据库,凭借其分布式架构、高可用性、云原生支持等特性,成为企业级应用的核心选择。本文将以实战操作为核心,覆盖集群部署、数据分片、性能调优、容灾备份、云上迁移五大场景,通过真实案例与代码示例,助你快速掌握GaussDB的实战技能,解决企业级应用中的复杂问题!一、GaussDB分布式集群部署实战1.本地多节点集群搭建(以openGauss为例)环境准备硬件要
- TIDB数据库的基本介绍
奕辰杰
tidb数据库
一、基础概念:1、TiDB是PingCAP公司自主设计、研发的国产开源分布式关系型数据库,具备水平扩容或者缩容、金融级高可用、实时HTAP、云原生的分布式数据库、兼容MySQL5.7协议和MySQL生态等重要特性。TiDB适合高可用、强一致要求较高、数据规模较大等各种应用场景。官方文档非常详细齐全。官方网站:https://cn.pingcap.com/官方文档:https://docs.ping
- 短视频矩阵服务架构指南
李lrh9166
架构
高效微服务架构设计指南技术架构设计在技术架构设计方面,本系统采用了微服务架构,以增强系统的可维护性和扩展性。每个服务都可以独立部署和扩展,从而提高了系统的整体灵活性和响应速度。API网关作为系统的入口,负责请求路由、负载均衡、认证和授权等功能。此外,系统还采用多租户设计,确保数据隔离,每个租户的数据是独立的,但可以共享基础架构,从而实现资源的高效利用。在数据存储方面,系统使用分布式数据库或云数据库
- Zookeeper(71)Zookeeper在分布式数据库中的应用是什么?
辞暮尔尔-烟火年年
微服务分布式zookeeper数据库
Zookeeper在分布式数据库中的应用主要体现在以下几个方面:配置管理:Zookeeper可以存储和管理分布式数据库的配置信息,确保所有节点共享一致的配置。节点管理:Zookeeper可以跟踪分布式数据库集群中的节点信息,监控节点的状态(上线、下线、故障等)。分布式协调:Zookeeper可以在分布式数据库中实现分布式锁、Leader选举等功能,确保集群中的协调操作。元数据管理:Zookeepe
- 讲讲Mysql主从复制原理与延迟
java1234_小锋
mysqlmysqljava数据库
大家好,我是锋哥。今天分享关于【讲讲Mysql主从复制原理与延迟】面试题。希望对大家有帮助;讲讲Mysql主从复制原理与延迟1000道互联网大厂Java工程师精选面试题-Java资源分享网MySQL主从复制是一种常见的分布式数据库架构,用于实现数据的备份、负载均衡和高可用性。在这种架构下,一个MySQL实例充当主服务器(Master),负责处理写入操作;一个或多个MySQL实例充当从服务器(Sla
- 【大数据分析】Spark SQL查询:使用SQL命令
sword_csdn
Sparkspark数据分析sql
对于使用关系型数据库或分布式数据库的用户可能更容易和更自然地使用SQL,比如Hive。在SparkSQL编写SQL命令时,它们将被转换为DataFrame上的操作。通过连接到Spark的Thrift服务器,它们可以通过标准的JDBC或ODBC协议从应用服务器连接到Spark。Spark支持两种SQL方言:SQL和HQL。Spark社区推荐的是HQL,因为HQL具有更丰富的功能。要使用HQL,需要使
- 分布式数据库解析
qcidyu
文章归档数据分片高可用架构云数据库共识算法全球一致性分布式事务CAP定理
title:分布式数据库解析date:2025/2/20updated:2025/2/20author:cmdragonexcerpt:通过金融交易、社交平台、物联网等9大真实场景,结合GoogleSpanner跨洲事务、DynamoDB毫秒级扩展等38个生产级案例,揭示分布式数据库的核心原理与工程实践。内容涵盖CAP定理的动态权衡策略、Paxos/Raft协议的工程实现差异、TrueTime时钟
- HBase简介:高效分布式数据存储和处理
代码指四方
分布式hbase数据库大数据
HBase简介:高效分布式数据存储和处理HBase是一个高效的、可扩展的分布式数据库,它是构建在ApacheHadoop之上的开源项目。HBase的设计目标是为大规模数据存储和处理提供高吞吐量和低延迟的解决方案。它可以在成百上千台服务器上运行,并能够处理海量的结构化和半结构化数据。HBase的核心特点包括:分布式存储:HBase使用Hadoop分布式文件系统(HDFS)作为底层存储,数据被分布在集
- 如何学习HBase:从入门到精通的完整指南
狮歌~资深攻城狮
hbase大数据
如何学习HBase:从入门到精通的完整指南嘿,小伙伴们!如果你对大数据存储感兴趣,并且想要掌握HBase这一强大的分布式数据库,那么你来对地方了!本文将为你提供一个系统的学习路径,帮助你从零开始逐步深入理解HBase。1.基础知识准备1.1理解NoSQL数据库在开始学习HBase之前,建议先了解一下NoSQL数据库的基本概念和分类。NoSQL数据库与传统的关系型数据库(如MySQL)有很大的不同,
- 分布式存储--大规模订单架构设计
梦江河
大数据分布式订单系统大数据
架构一:MySQL+HBase+ElasticsearchMySQL存储实时订单,HBase存储历史订单,Elasticsearch实现订单的多维度搜索。架构复杂,运维维护成本高架构二:MySQL+TablestoreTablestore其实是HBase+Elasticsearch,既能存储大量数据,也能全文搜索架构三:分布式数据库TiDB+全文搜索功能参考文章
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟