ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类

ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类

 

 

 

目录

输出结果

设计思路

核心代码


 

 

 

输出结果

ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类_第1张图片ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类_第2张图片

 

 

设计思路

ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类_第3张图片

 

 

核心代码

metrics.adjusted_rand_score(y_test, y_pred)


plt.xlim([0, 10])
plt.ylim([0, 10])
plt.title('Instances')
plt.scatter(x1, x2)

colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'b']
markers = ['o', 's', 'D', 'v', '^', 'p', '*', '+']

clusters = [2, 3, 4, 5, 8]
subplot_counter = 1
sc_scores = []
for t in clusters:
    subplot_counter += 1
    plt.subplot(3, 2, subplot_counter)
    kmeans_model = KMeans(n_clusters=t).fit(X)
    for i, l in enumerate(kmeans_model.labels_):
        plt.plot(x1[i], x2[i], color=colors[l], marker=markers[l], ls='None')
    plt.xlim([0, 10])
    plt.ylim([0, 10])
    sc_score = silhouette_score(X, kmeans_model.labels_, metric='euclidean')
    sc_scores.append(sc_score)

    plt.title('K = %s, silhouette coefficient= %0.03f' %(t, sc_score))
    
plt.figure()
plt.plot(clusters, sc_scores, '*-')
plt.xlabel('Number of Clusters')
plt.ylabel('Silhouette Coefficient Score')
plt.title('Handwritten digits Datasets:the relationship curve between Silhouette Coefficient and the number of different clusters')

plt.show()

 

 

 

 

 

你可能感兴趣的:(ML,DataScience)