HDFS benchmark 基准测试

一. Hadoop基准测试

Hadoop自带了几个基准测试,被打包在几个jar包中。本文主要是cloudera版本测试
[hsu@server01 ~]$ ls /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop* | egrep "examples|test"
/opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples-2.5.0-mr1-cdh5.2.0.jar
/opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples.jar
/opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test-2.5.0-mr1-cdh5.2.0.jar
/opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar


(1)、Hadoop Test
当不带参数调用hadoop-test-0.20.2-cdh3u3.jar时,会列出所有的测试程序:
 [hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar 
 An example program must be given as the first argument.
 Valid program names are:
 DFSCIOTest: Distributed i/o benchmark of libhdfs.
 DistributedFSCheck: Distributed checkup of the file system consistency.
 MRReliabilityTest: A program that tests the reliability of the MR framework by injecting faults/failures
 TestDFSIO: Distributed i/o benchmark.
 dfsthroughput: measure hdfs throughput
 filebench: Benchmark SequenceFile(Input|Output)Format (block,record compressed and uncompressed), Text(Input|Output)Format (compressed and uncompressed)
 loadgen: Generic map/reduce load generator
 mapredtest: A map/reduce test check.
 minicluster: Single process HDFS and MR cluster.
 mrbench: A map/reduce benchmark that can create many small jobs
 nnbench: A benchmark that stresses the namenode.
 testarrayfile: A test for flat files of binary key/value pairs.
 testbigmapoutput: A map/reduce program that works on a very big non-splittable file and does identity map/reduce
 testfilesystem: A test for FileSystem read/write.
 testmapredsort: A map/reduce program that validates the map-reduce framework's sort.
 testrpc: A test for rpc.
 testsequencefile: A test for flat files of binary key value pairs.
 testsequencefileinputformat: A test for sequence file input format.
 testsetfile: A test for flat files of binary key/value pairs.
 testtextinputformat: A test for text input format.
 threadedmapbench: A map/reduce benchmark that compares the performance of maps with multiple spills over maps with 1 spill


 这些程序从多个角度对Hadoop进行测试,TestDFSIO、mrbench和nnbench是三个广泛被使用的测试。


(2) TestDFSIO write


TestDFSIO用于测试HDFS的IO性能,使用一个MapReduce作业来并发地执行读写操作,每个map任务用于读或写每个文件,map的输出用于收集与处理文件相关的统计信息,reduce用于累积统计信息,并产生summary。TestDFSIO的用法如下:
TestDFSIO
Usage: TestDFSIO [genericOptions] -read | -write | -append | -clean [-nrFiles N] [-fileSize Size[B|KB|MB|GB|TB]] [-resFile resultFileName] [-bufferSize Bytes] [-rootDir]


以下的例子将往HDFS中写入10个1000MB的文件:
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar TestDFSIO -write -nrFiles 10 -fileSize 1000
15/01/13 15:14:17 INFO fs.TestDFSIO: TestDFSIO.1.7
15/01/13 15:14:17 INFO fs.TestDFSIO: nrFiles = 10
15/01/13 15:14:17 INFO fs.TestDFSIO: nrBytes (MB) = 1000.0
15/01/13 15:14:17 INFO fs.TestDFSIO: bufferSize = 1000000
15/01/13 15:14:17 INFO fs.TestDFSIO: baseDir = /benchmarks/TestDFSIO
15/01/13 15:14:18 INFO fs.TestDFSIO: creating control file: 1048576000 bytes, 10 files
15/01/13 15:14:19 INFO fs.TestDFSIO: created control files for: 10 files
15/01/13 15:15:23 INFO fs.TestDFSIO: ----- TestDFSIO ----- : write
15/01/13 15:15:23 INFO fs.TestDFSIO:            Date & time: Tue Jan 13 15:15:23 CST 2015
15/01/13 15:15:23 INFO fs.TestDFSIO:        Number of files: 10
15/01/13 15:15:23 INFO fs.TestDFSIO: Total MBytes processed: 10000.0
15/01/13 15:15:23 INFO fs.TestDFSIO:      Throughput mb/sec: 29.67623230554649
15/01/13 15:15:23 INFO fs.TestDFSIO: Average IO rate mb/sec: 29.899526596069336
15/01/13 15:15:23 INFO fs.TestDFSIO:  IO rate std deviation: 2.6268824639446526
15/01/13 15:15:23 INFO fs.TestDFSIO:     Test exec time sec: 64.203
15/01/13 15:15:23 INFO fs.TestDFSIO: 


(3) TestDFSIO read
以下的例子将从HDFS中读取10个1000MB的文件:
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar TestDFSIO -read -nrFiles 10 -fileSize 1000
15/01/13 15:42:35 INFO fs.TestDFSIO: TestDFSIO.1.7
15/01/13 15:42:35 INFO fs.TestDFSIO: nrFiles = 10
15/01/13 15:42:35 INFO fs.TestDFSIO: nrBytes (MB) = 1000.0
15/01/13 15:42:35 INFO fs.TestDFSIO: bufferSize = 1000000
15/01/13 15:42:35 INFO fs.TestDFSIO: baseDir = /benchmarks/TestDFSIO
15/01/13 15:42:36 INFO fs.TestDFSIO: creating control file: 1048576000 bytes, 10 files
15/01/13 15:42:37 INFO fs.TestDFSIO: created control files for: 10 files


(4) 清空测试数据
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar TestDFSIO -clean
15/01/13 15:46:51 INFO fs.TestDFSIO: TestDFSIO.1.7
15/01/13 15:46:51 INFO fs.TestDFSIO: nrFiles = 1
15/01/13 15:46:51 INFO fs.TestDFSIO: nrBytes (MB) = 1.0
15/01/13 15:46:51 INFO fs.TestDFSIO: bufferSize = 1000000
15/01/13 15:46:51 INFO fs.TestDFSIO: baseDir = /benchmarks/TestDFSIO
15/01/13 15:46:52 INFO fs.TestDFSIO: Cleaning up test files


(4) nnbench测试
nnbench用于测试NameNode的负载,它会生成很多与HDFS相关的请求,给NameNode施加较大的压力。这个测试能在HDFS上模拟创建、读取、重命名和删除文件等操作。nnbench的用法如下:


以下例子使用12个mapper和6个reducer来创建1000个文件:
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar nnbench -operation create_write -maps 12 -reduces 6 -blockSize 1 -bytesToWrite 0 -numberOfFiles 1000 -replicationFactorPerFile 3 -readFileAfterOpen true -baseDir /benchmarks/NNBench-`hostname -s`
NameNode Benchmark 0.4
15/01/13 15:53:33 INFO hdfs.NNBench: Test Inputs: 
15/01/13 15:53:33 INFO hdfs.NNBench:            Test Operation: create_write
15/01/13 15:53:33 INFO hdfs.NNBench:                Start time: 2015-01-13 15:55:33,585
15/01/13 15:53:33 INFO hdfs.NNBench:            Number of maps: 12
15/01/13 15:53:33 INFO hdfs.NNBench:         Number of reduces: 6
15/01/13 15:53:33 INFO hdfs.NNBench:                Block Size: 1
15/01/13 15:53:33 INFO hdfs.NNBench:            Bytes to write: 0
15/01/13 15:53:33 INFO hdfs.NNBench:        Bytes per checksum: 1
15/01/13 15:53:33 INFO hdfs.NNBench:           Number of files: 1000
15/01/13 15:53:33 INFO hdfs.NNBench:        Replication factor: 3
15/01/13 15:53:33 INFO hdfs.NNBench:                  Base dir: /benchmarks/NNBench-server01
15/01/13 15:53:33 INFO hdfs.NNBench:      Read file after open: true
15/01/13 15:53:34 INFO hdfs.NNBench: Deleting data directory
15/01/13 15:53:34 INFO hdfs.NNBench: Creating 12 control files


15/01/13 15:56:06 INFO hdfs.NNBench: -------------- NNBench -------------- : 
15/01/13 15:56:06 INFO hdfs.NNBench:                                Version: NameNode Benchmark 0.4
15/01/13 15:56:06 INFO hdfs.NNBench:                            Date & time: 2015-01-13 15:56:06,539
15/01/13 15:56:06 INFO hdfs.NNBench: 
15/01/13 15:56:06 INFO hdfs.NNBench:                         Test Operation: create_write
15/01/13 15:56:06 INFO hdfs.NNBench:                             Start time: 2015-01-13 15:55:33,585
15/01/13 15:56:06 INFO hdfs.NNBench:                            Maps to run: 12
15/01/13 15:56:06 INFO hdfs.NNBench:                         Reduces to run: 6
15/01/13 15:56:06 INFO hdfs.NNBench:                     Block Size (bytes): 1
15/01/13 15:56:06 INFO hdfs.NNBench:                         Bytes to write: 0
15/01/13 15:56:06 INFO hdfs.NNBench:                     Bytes per checksum: 1
15/01/13 15:56:06 INFO hdfs.NNBench:                        Number of files: 1000
15/01/13 15:56:06 INFO hdfs.NNBench:                     Replication factor: 3
15/01/13 15:56:06 INFO hdfs.NNBench:             Successful file operations: 0
15/01/13 15:56:06 INFO hdfs.NNBench: 
15/01/13 15:56:06 INFO hdfs.NNBench:         # maps that missed the barrier: 0
15/01/13 15:56:06 INFO hdfs.NNBench:                           # exceptions: 0
15/01/13 15:56:06 INFO hdfs.NNBench: 
15/01/13 15:56:06 INFO hdfs.NNBench:                TPS: Create/Write/Close: 0
15/01/13 15:56:06 INFO hdfs.NNBench: Avg exec time (ms): Create/Write/Close: 0.0
15/01/13 15:56:06 INFO hdfs.NNBench:             Avg Lat (ms): Create/Write: NaN
15/01/13 15:56:06 INFO hdfs.NNBench:                    Avg Lat (ms): Close: NaN
15/01/13 15:56:06 INFO hdfs.NNBench: 
15/01/13 15:56:06 INFO hdfs.NNBench:                  RAW DATA: AL Total #1: 0
15/01/13 15:56:06 INFO hdfs.NNBench:                  RAW DATA: AL Total #2: 0
15/01/13 15:56:06 INFO hdfs.NNBench:               RAW DATA: TPS Total (ms): 0
15/01/13 15:56:06 INFO hdfs.NNBench:        RAW DATA: Longest Map Time (ms): 0.0
15/01/13 15:56:06 INFO hdfs.NNBench:                    RAW DATA: Late maps: 0
15/01/13 15:56:06 INFO hdfs.NNBench:              RAW DATA: # of exceptions: 0
15/01/13 15:56:06 INFO hdfs.NNBench: 


(5) mrbench测试
mrbench会多次重复执行一个小作业,用于检查在机群上小作业的运行是否可重复以及运行是否高效。mrbench的用法如下:
MRBenchmark.1.7
Usage: mrbench [-baseDir ] [-jar ] [-numRuns ] [-maps ] [-reduces ] [-inputLines ] [-inputType ] [-verbose]


以下例子会运行一个小作业50次:
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-test.jar mrbench -numRuns 50
MRBenchmark.0.0.2
15/01/13 16:17:19 INFO mapred.MRBench: creating control file: 1 numLines, ASCENDING sortOrder
15/01/13 16:17:20 INFO mapred.MRBench: created control file: /benchmarks/MRBench/mr_input/input_331064064.txt
15/01/13 16:17:20 INFO mapred.MRBench: Running job 0: input=hdfs://server01:8020/benchmarks/MRBench/mr_input output=hdfs://server01:8020/benchmarks/MRBench/mr_output/output_556018847


DataLines       Maps    Reduces AvgTime (milliseconds)
1               2       1       26748
以上结果表示平均作业完成时间是26秒。


(6)  Hadoop Examples
除了上文提到的测试,Hadoop还自带了一些例子,比如WordCount和TeraSort,这些例子在hadoop-examples*.jar中。
[hsu@server01 ~]$ ls /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples*
/opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples-2.5.0-mr1-cdh5.2.0.jar
/opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples.jar


执行以下命令会列出所有的示例程序:
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples.jar
 An example program must be given as the first argument.
 Valid program names are:
 aggregatewordcount: An Aggregate based map/reduce program that counts the words in the input files.
 aggregatewordhist: An Aggregate based map/reduce program that computes the histogram of the words in the input files.
 bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute exact digits of Pi.
 dbcount: An example job that count the pageview counts from a database.
 distbbp: A map/reduce program that uses a BBP-type formula to compute exact bits of Pi.
 grep: A map/reduce program that counts the matches of a regex in the input.
 join: A job that effects a join over sorted, equally partitioned datasets
 multifilewc: A job that counts words from several files.
 pentomino: A map/reduce tile laying program to find solutions to pentomino problems.
 pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo method.
 randomtextwriter: A map/reduce program that writes 10GB of random textual data per node.
 randomwriter: A map/reduce program that writes 10GB of random data per node.
 secondarysort: An example defining a secondary sort to the reduce.
 sort: A map/reduce program that sorts the data written by the random writer.
 sudoku: A sudoku solver.
 teragen: Generate data for the terasort
 terasort: Run the terasort
 teravalidate: Checking results of terasort
 wordcount: A map/reduce program that counts the words in the input files.
 wordmean: A map/reduce program that counts the average length of the words in the input files.
 wordmedian: A map/reduce program that counts the median length of the words in the input files.
 wordstandarddeviation: A map/reduce program that counts the standard deviation of the length of the words in the input files.


(7) TeraSort


一个完整的TeraSort测试需要按以下三步执行:
1、用TeraGen生成随机数据
2、对输入数据运行TeraSort
3、用TeraValidate验证排好序的输出数据
并不需要在每次测试时都生成输入数据,生成一次数据之后,每次测试可以跳过第一步。


TeraGen的用法如下:


$ hadoop jar hadoop-*examples*.jar teragen
以下命令运行TeraGen生成10GB的输入数据,并输出到目录/examples/terasort-input:
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples.jar teragen 100000000 /examples/terasort-input
15/01/13 16:57:34 INFO client.RMProxy: Connecting to ResourceManager at server01/135.33.5.53:8032
15/01/13 16:57:35 INFO terasort.TeraSort: Generating 100000000 using 2
15/01/13 16:57:35 INFO mapreduce.JobSubmitter: number of splits:2
15/01/13 16:59:07 INFO mapreduce.Job: Job job_1420542591388_0105 completed successfully
15/01/13 16:59:08 INFO mapreduce.Job: Counters: 31
       File System Counters
               FILE: Number of bytes read=0
               FILE: Number of bytes written=211922
               FILE: Number of read operations=0
               FILE: Number of large read operations=0
               FILE: Number of write operations=0
               HDFS: Number of bytes read=170
               HDFS: Number of bytes written=10000000000
               HDFS: Number of read operations=8
               HDFS: Number of large read operations=0
               HDFS: Number of write operations=4
       Job Counters 
               Launched map tasks=2
               Other local map tasks=2
               Total time spent by all maps in occupied slots (ms)=150416
               Total time spent by all reduces in occupied slots (ms)=0
               Total time spent by all map tasks (ms)=150416
               Total vcore-seconds taken by all map tasks=150416
               Total megabyte-seconds taken by all map tasks=154025984
       Map-Reduce Framework
               Map input records=100000000
               Map output records=100000000
               Input split bytes=170
               Spilled Records=0
               Failed Shuffles=0
               Merged Map outputs=0
               GC time elapsed (ms)=1230
               CPU time spent (ms)=175090
               Physical memory (bytes) snapshot=504807424
               Virtual memory (bytes) snapshot=3230924800
               Total committed heap usage (bytes)=1363148800
       org.apache.hadoop.examples.terasort.TeraGen$Counters
               CHECKSUM=214760662691937609
       File Input Format Counters 
               Bytes Read=0
       File Output Format Counters 
               Bytes Written=10000000000
TeraGen产生的数据每行的格式如下:
<10 bytes key><10 bytes rowid><78 bytes filler>\r\n
其中:


1、key是一些随机字符,每个字符的ASCII码取值范围为[32, 126]
2、rowid是一个整数,右对齐
3、filler由7组字符组成,每组有10个字符(最后一组8个),字符从’A'到’Z'依次取值


以下命令运行TeraSort对数据进行排序,并将结果输出到目录/examples/terasort-output:
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples.jar terasort /examples/terasort-input /examples/terasort-output
15/01/13 17:08:08 INFO terasort.TeraSort: starting
15/01/13 17:08:10 INFO input.FileInputFormat: Total input paths to process : 2
Spent 187ms computing base-splits.
Spent 3ms computing TeraScheduler splits.
Computing input splits took 192ms
Sampling 10 splits of 76
Making 144 from 100000 sampled records
Computing parititions took 596ms
Spent 791ms computing partitions.terasort /examples/terasort-input /examples/terasort-output
15/01/13 17:09:13 INFO mapreduce.Job: Counters: 50
       File System Counters
               FILE: Number of bytes read=4461968618
               FILE: Number of bytes written=8889668662
               FILE: Number of read operations=0
               FILE: Number of large read operations=0
               FILE: Number of write operations=0
               HDFS: Number of bytes read=10000010260
               HDFS: Number of bytes written=10000000000
               HDFS: Number of read operations=660
               HDFS: Number of large read operations=0
               HDFS: Number of write operations=288
       Job Counters 
               Launched map tasks=76
               Launched reduce tasks=144
               Data-local map tasks=75
               Rack-local map tasks=1
               Total time spent by all maps in occupied slots (ms)=933160
               Total time spent by all reduces in occupied slots (ms)=1227475
               Total time spent by all map tasks (ms)=933160
               Total time spent by all reduce tasks (ms)=1227475
               Total vcore-seconds taken by all map tasks=933160
               Total vcore-seconds taken by all reduce tasks=1227475
               Total megabyte-seconds taken by all map tasks=955555840
               Total megabyte-seconds taken by all reduce tasks=1256934400
       Map-Reduce Framework
               Map input records=100000000
               Map output records=100000000
               Map output bytes=10200000000
               Map output materialized bytes=4403942936
               Input split bytes=10260
               Combine input records=0
               Combine output records=0
               Reduce input groups=100000000
               Reduce shuffle bytes=4403942936
               Reduce input records=100000000
               Reduce output records=100000000
               Spilled Records=200000000
               Shuffled Maps =10944
               Failed Shuffles=0
               Merged Map outputs=10944
               GC time elapsed (ms)=45169
               CPU time spent (ms)=2021010
               Physical memory (bytes) snapshot=95792517120
               Virtual memory (bytes) snapshot=357225058304
               Total committed heap usage (bytes)=174283816960
       Shuffle Errors
               BAD_ID=0
               CONNECTION=0
               IO_ERROR=0
               WRONG_LENGTH=0
               WRONG_MAP=0
               WRONG_REDUCE=0
       File Input Format Counters 
               Bytes Read=10000000000
       File Output Format Counters 
               Bytes Written=10000000000
15/01/13 17:09:13 INFO terasort.TeraSort: done


(8) terasort-validate 验证是否有序


以下命令运行TeraValidate来验证TeraSort输出的数据是否有序,如果检测到问题,将乱序的key输出到目录/examples/terasort-validate
[hsu@server01 ~]$ sudo hadoop jar /opt/cloudera/parcels/CDH-5.2.0-1.cdh5.2.0.p0.36/lib/hadoop-0.20-mapreduce/hadoop-examples.jar teravalidate /examples/terasort-output /examples/terasort-validate
15/01/13 17:17:37 INFO client.RMProxy: Connecting to ResourceManager at server01/135.33.5.53:8032
15/01/13 17:17:38 INFO input.FileInputFormat: Total input paths to process : 144
Spent 93ms computing base-splits.
Spent 3ms computing TeraScheduler splits.
15/01/13 17:17:38 INFO mapreduce.JobSubmitter: number of splits:144
15/01/13 17:17:38 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1420542591388_0107
15/01/13 17:17:38 INFO impl.YarnClientImpl: Submitted application application_1420542591388_0107teravalidate /examples/terasort-output /examples/terasort-validate
15/01/13 17:18:12 INFO mapreduce.Job: Job job_1420542591388_0107 completed successfully
15/01/13 17:18:12 INFO mapreduce.Job: Counters: 50
       File System Counters
               FILE: Number of bytes read=6963
               FILE: Number of bytes written=15445453
               FILE: Number of read operations=0
               FILE: Number of large read operations=0
               FILE: Number of write operations=0
               HDFS: Number of bytes read=10000019584
               HDFS: Number of bytes written=25
               HDFS: Number of read operations=435
               HDFS: Number of large read operations=0
               HDFS: Number of write operations=2
       Job Counters 
               Launched map tasks=144
               Launched reduce tasks=1
               Data-local map tasks=142
               Rack-local map tasks=2
               Total time spent by all maps in occupied slots (ms)=685624
               Total time spent by all reduces in occupied slots (ms)=3384
               Total time spent by all map tasks (ms)=685624
               Total time spent by all reduce tasks (ms)=3384
               Total vcore-seconds taken by all map tasks=685624
               Total vcore-seconds taken by all reduce tasks=3384
               Total megabyte-seconds taken by all map tasks=702078976
               Total megabyte-seconds taken by all reduce tasks=3465216
       Map-Reduce Framework
               Map input records=100000000
               Map output records=432
               Map output bytes=11664
               Map output materialized bytes=13830
               Input split bytes=19584
               Combine input records=0
               Combine output records=0
               Reduce input groups=289
               Reduce shuffle bytes=13830
               Reduce input records=432
               Reduce output records=1
               Spilled Records=864
               Shuffled Maps =144
               Failed Shuffles=0
               Merged Map outputs=144
               GC time elapsed (ms)=4014
               CPU time spent (ms)=334280
               Physical memory (bytes) snapshot=85470654464
               Virtual memory (bytes) snapshot=234019295232
               Total committed heap usage (bytes)=114868879360
       Shuffle Errors
               BAD_ID=0
               CONNECTION=0
               IO_ERROR=0
               WRONG_LENGTH=0
               WRONG_MAP=0
               WRONG_REDUCE=0
       File Input Format Counters 
               Bytes Read=10000000000
       File Output Format Counters 
               Bytes Written=25


[hsu@server01 ~]$ hadoop fs -cat /examples/terasort-validate/*                                                           checksum        2fafbaf537afd49
结论:检测通过


(10) 总结
在提交任务目录下会生成两个文件
[hsu@server01 ~]$ LANG=en
[hsu@server01 ~]$ ll
total 16
-rw-r--r-- 1 root root 1142 Jan 13 15:56 NNBench_results.log
-rw-r--r-- 1 root root  903 Jan 13 15:43 TestDFSIO_results.log


约对176838144行数据进行排序刚好1分钟时间,部分数据:
0000000: 00 00 00 a7 0d 2a a8 02 da da 00 11 30 30 30 30  .....*......0000

0000010: 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000

Action 数据量(G)   HiveTime(s)   ImpalaTime(s) Hive结论 Imapla结论

Count(*) 39.8 386.804 192.75 通过 警告阈值(内存)
join(2) 39.8*2 413.651 525.48 通过 警告阈值(内存)

结论:

                  1、对于大数据量impala并不占优势,而且还可能节点impalad节点崩溃,impala非常吃内存,parquet也非常吃内存!

                  2、hive运行会出现大量IO操作,往往impala运行不下来的任务hive能够运行。

                  3、impala对sql支持度以及对hive一些分析函数特殊数据格式支持仍然有待新版本。

你可能感兴趣的:(Cloudera,性能,测试,cloudera,hadoop)