keras图像输入通道建立——flow_from_directory

动机

keras日渐火热,了解其高效建立输入通道的方法有重要意义。

目标

  • 创建并结构化数据集

  • 生成训练集和验证集

  • 模型选择、加载、编译和训练

 

 

创建并结构化数据集

以图像分割为例,你必须跟踪图像和它们的膜。通常情况下,,你将选择  PASCAL VOC, 或者 MS COCO, 或者 Cityscapes。

如果选择这些数据集,你大部分的工作已经完成,因为这些数据集已经有了各自的train、val和test集合。你仅仅需要下载并将它们分成相关目录。

如果你的工作是图像分割,那么你的数据集结构应该如图

keras图像输入通道建立——flow_from_directory_第1张图片

对于使用公共数据集的人来说,你仅仅需要将目录结构与上述保持一致。

对于其他的使用自己数据集的人,你需要写一个适合自己的脚本,参考代码:

 

生成训练集和验证集

为了训练模型,你需要生成批量图片并输入模型。当你做这一步时候你可能想要执行一些基本操作,增加数据集,例如缩放、旋转、裁剪和移位等。这成为数据扩增。事实上,一个非常常见的操作是将所有图像调整到统一的shape,这使得训练过程统一。数据扩增并不改变你的图像,仅仅创建图像的另一种表达。

为了实现这个不分,你需要使用Keras's ImageDataGenerator.

官方文档解释:

Generate batches of tensor image data with real-time data augmentation. The data will be looped over (in batches).

 

1.利用官方函数

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(
    rescale=1./255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True
)
val_datagen = ImageDataGenerator(rescale=1./255)

train_image_generator = train_datagen.flow_from_directory(
    'data/train_frames/train',
    batch_size=4#NORMALLY 4/8/16/32
)

train_mask_generator = train_datagen.flow_from_directory(
    'data/train_frames/train',
    batch_size=4#NORMALY 4/8/16/32
)

val_image_generator = val_datagen.flow_from_directory(
    'data/val_frames/val',
    batch_size=4
)

val_mask_generator = val_datagen.flow_from_directory(
    'data/val_masks/val',
    batch_szie=4
)
train_generator = zip(train_image_generator, train_mask_generator)
val_generator = zip(val_image_generator, val_mask_generator)


2.利用自定义函数

import cv2
import os
import numpy as np
import random



def data_gen(img_folder, mask_folder, batch_size):
    c = 0
    n = os.listdir(img_folder)
    random.shuffle(n)

    while(True):
        img = np.zeros((batch_size, 512, 512, 3)).astype('float')
        mask = np.zeros((batch_size, 512, 512, 1)).astype('float')

        for i in range(c, c+batch_size):
            train_img = cv2.imread(img_folder+'/'+n[i])/255
            train_img = cv2.resize(train_img, (512, 512))

            img[i-c] = train_img

            train_mask = cv2.imread(mask_folder+'/'+n[i], cv2.IMREAD_GRAYSCALE)/255
            train_mask = cv2.resize(train_mask, (512, 512))
            train_mask = train_mask.reshape(512, 512, 1)

            mask[i-c] = train_mask

        c+=batch_size
        if(c+batch_size>=len(os.listdir(img_folder))):
            c = 0
            random.shuffle(n)

        yield img,mask

train_frame_path = 'train_frames'
train_mask_path = 'train_masks'

val_frames_path = 'val_frames'
val_mask_path = 'val_masks'

#Train the model
train_gen = data_gen(train_frame_path, train_mask_path, batch_size=4)
val_gen = data_gen(val_frames_path, val_mask_path, batch_size=4)

模型选择、加载、编译和训练

当你准备好数据,并创建针对于训练的图像生成器后,你就完成了数据准备阶段。接下来,你将开始准备训练。

在你准备训练之前,你需要选择模型结构。幸运的是大部分流行的模型已经被训练过并且被免费提供使用。例如

  • The Keras UNet implementation
  • The Keras FCNet implementations.

 

在初期,你无需翻新这些结构的差异以及在哪里使用他们。本例中,你可以直接将上面keras提供的模型model.py导入你自己的train.py中。 示例:

from keras.callbacks import ModelCheckpoint
from keras.callbacks import CSVLogger
from keras.callbacks import EarlyStopping
from keras.optimizers import Adam

import model

NO_OF_TRAINING_IMAGES = len(os.listdir('/your_data/train_frames/train/'))
NO_OF_VAL_IMAGES = len(os.listdir('/your_data/val_frames/val/'))

NO_OF_EPOCHS = 'ANYTHING FROM 30-100 FOR SMALL-MEDIUM SIZED DATASETS IS OKAY'

BATCH_SIZE = 'BATCH SIZE PREVIOUSLY INITIALISED'

weights_path = 'path/where/resulting_weights_will_be_saved'

m = model.FCN_Vgg16_32s()
opt = Adam(lr=1E-5, beta_1=0.9, beta_2=0.999, epsilon=1e-08)

m.compile(loss='The loss to optimise [eg: dice_loss],
              optimizer=opt,
              metrics='YOUR_METRIC [could be 'accuracy' or mIOU, dice_coeff etc]')

checkpoint = ModelCheckpoint(weights_path, monitor='METRIC_TO_MONITOR', 
                             verbose=1, save_best_only=True, mode='max')

csv_logger = CSVLogger('./log.out', append=True, separator=';')

earlystopping = EarlyStopping(monitor = 'METRIC_TO_MONITOR', verbose = 1,
                              min_delta = 0.01, patience = 3, mode = 'max')

callbacks_list = [checkpoint, csv_logger, earlystopping]

results = m.fit_generator(train_gen, epochs=NO_OF_EPOCHS, 
                          steps_per_epoch = (NO_OF_TRAINING_IMAGES//BATCH_SIZE),
                          validation_data=val_gen, 
                          validation_steps=(NO_OF_VAL_IMAGES//BATCH_SIZE), 
                          callbacks=callbacks_list)
m.save('Model.h5')

 

参考https://towardsdatascience.com/a-keras-pipeline-for-image-segmentation-part-1-6515a421157d

你可能感兴趣的:(人工智能,python)